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Abstract

Diffusion model-generated images can appear indistinguishable
from authentic photographs, but these images often contain arti-
facts and implausibilities that reveal their Al-generated provenance.
Given the challenge to public trust in media posed by photorealistic
Al-generated images, we conducted a large-scale experiment mea-
suring human detection accuracy on 450 diffusion-model generated
images and 149 real images. Based on collecting 749,828 observa-
tions and 34,675 comments from 50,444 participants, we find that
scene complexity of an image, artifact types within an image, dis-
play time of an image, and human curation of Al-generated images
all play significant roles in how accurately people distinguish real
from Al-generated images. Additionally, we propose a taxonomy
characterizing artifacts often appearing in images generated by
diffusion models. Our empirical observations and taxonomy offer
nuanced insights into the capabilities and limitations of diffusion
models to generate photorealistic images in 2024.
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1 Introduction

The capabilities of diffusion models to generate photorealistic im-
ages of people are beginning to contribute to disinformation and
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erode trust in the media [17]. For example, in March 2023, realistic
Al-generated images of world leaders went viral on social media,
showing Pope Francis wearing what appeared to be a designer
puffer jacket, Donald Trump getting arrested, and Vladimir Putin
standing behind prison bars [2]. These exemplar images may ap-
pear both provocative and realistic at first glance, but they are far
from perfectly photorealistic; they contain distortions of hands and
faces, implausible grasping of objects, and shadows that do not
match the objects that appear to cast them. These distortions are
not unique to these particular images but are pervasive in diffusion
model-generated images produced by text-to—image tools such
as Midjourney (the source of these fake images of world leaders),
Stable Diffusion by Stability Al, and Firefly by Adobe [40]. While it
is possible to generate images that seem indistinguishable from pho-
tographs, many diffusion model-generated images still leave behind
human-identifiable artifacts. This raises an open research question
for human-computer interaction: What drives human perception
of photorealism in images generated by diffusion models?

We approach this question by conducting a large-scale, online
experiment where we collect data on human participants’ accu-
racy in identifying whether images are Al-generated or real. We
measure photorealism following a psychophysics approach [95]
that defines photorealism as human discrimination performance.
Accuracy scores are inversely associated with photorealism: a high
accuracy score indicates low photorealism, whereas a low accu-
racy score indicates high photorealism. By defining photorealism
based on discrimination performance, we avoid the speculation
and subjectivity of asking participants questions like “Is the im-
age photorealistic?" [47] and “Could these images be taken with a
camera?" [86].

By comparing human detection accuracy across a diverse set of
images, we can evaluate the contexts that influence the continuum
of photorealism. Past research has demonstrated that GAN(Generative
Adversarial Networks)-generated human portraits can be indistin-
guishable from real portrait images [60]. However, open questions
on context remain: How often do portrait images appear indistin-
guishable from real portraits? How does scene complexity across
styles of photographic portraiture (e.g., single-subject close-up,
single-subject full body, posed group, and candid group) influence
aggregate measures of photorealism? How accurately can people
identify real images across scene complexities? What kind of arti-
facts arise in diffusion model-generated images and how are the
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presence of those artifacts related to photorealism? How does dis-
play time of an image influence measures of photorealism? How
does human curation of Al-generated image stimuli influence mea-
sures of photorealism?

We approach each of these questions in turn and then consider
an interventional question: How should an Al literacy guide cate-
gorize artifacts and implausibilities that emerge in photorealistic
Al-generated images to promote attention to and communicate
these visual cues? We also consider a flipped version of that ques-
tion: How do we help people avoid falsely identifying a real image
as Al-generated? This question differs from the first because it fo-
cuses on how people can identify when to trust what they see. This
is important because there has already been a case where a politi-
cian has incorrectly, publicly claimed that an authentic photograph
of his opponent was Al-generated [3, 63]. Enhancing human skill
at distinguish real from Al-generated remains important because
technical platform-level solutions (e.g. watermarking and machine
learning classification) lack robustness and are susceptible to er-
ror when images are slightly modified via cropping, compression,
and other edits. Al literacy guides have the potential to help hu-
mans stay abreast of the capabilities and limitations of Al to better
navigate assessing the authenticity of images.

Our contributions toward answering these research questions
are fourfold: First, we contribute a taxonomy of artifacts and im-
plausibilities in diffusion model-generated images of humans along
five dimensions: (1) anatomical implausibilities: representations
of human anatomy that deviate from realistic or common forms;
(2) stylistic artifacts: visual elements that often appear in images
generated by diffusion models like shiny or plastic textures; (3)
functional implausibilities: design or structural flaws that would
make an object or system unlikely to function as intended in the
real world; (4) violations of physics: instances where an object or
scenario defies the laws of physics; and (5) sociocultural implausibil-
ities: representations of people that are unlikely to reflect the norms
of a culture or society. Second, we conduct a large-scale digital ex-
periment and present an empirical evaluation of photorealism - as
measured by human detection accuracy — across images from three
state-of-the-art diffusion models, varying photographic contexts,
types of artifacts in an image, and randomized display time of an
image. This evaluation offers insight into the capabilities and limi-
tations of diffusion models to produce photorealistic images. Third,
we provide empirical evidence revealing the influence of human cu-
ration on the level of photorealism in images generated by diffusion
models. This finding reveals the importance of human curation and
the limits of state-of-the-art diffusion models to producing photo-
realistic images, and create consistent and believable narratives via
an automated deluge of fake images that are indistinguishable from
real photographs. Fourth, we release a public dataset of 749,828
responses from 50,444 participants on 599 images to enable the
replications of our results and further research on photorealism in
diffusion models; replication data, code, and stimuli can be found
at the following link: https://github.com/negarkamali/Replication-
for-Characterizing-Photorealism-2025/.
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2 Background

2.1 Limitations of machine learning approaches
to detect Al-generated images

Machine learning models for detecting Al-generated images are
brittle and lack robustness to simple data transformations. Corvi
et al. [10] compare four different machine learning approaches to
deepfake detection and demonstrate that recropping and compres-
sion - simple modifications common on social media - lead to drops
in accuracy such that the classifiers are nearly just as good as ran-
dom guessing. Dong et al. [13]reveal the ease with which spectral
artifacts used in the identification of GAN-generated images can be
mitigated via blurring and resizing, demonstrating a noticeable de-
crease in accuracy under basic modifications. Cozzolino et al. [11]
demonstrate that post—processing images by random-cropping,
resizing, and compression lead to a drop in Al-generated image
detection from 90% accuracy to 85% accuracy. The fundamental
problem is that machine learning models for deepfake detection
lack robustness to context shift, out—of—distribution data and ad-
versarial perturbations [23, 28, 35, 80].

How an image is generated influences the ability of deepfake
detection classifiers to accurately identify it as Al-generated. Classi-
fiers trained to detect GAN-generated images tend to fail to detect
diffusion model-generated images. For example, the approach to de-
tecting GAN-generated images based on frequency spectra [6, 14, 21,
54,91, 94] and inconsistencies in head poses and facial landmark po-
sitions [58, 88, 89], do not generalize to detecting images generated
by diffusion models [62]. GAN-trained detection models miss these
patterns because they have learned patterns for identifying GAN-
generated images [70, 79]. Likewise, it is possible to learn the statisti-
cal regularities in diffusion model-generated images but these regu-
larities are not invariant to image post-processing. [4, 52, 82, 85, 87].

Moreover, machine learning models’ lack of robustness for detec-
tion is exacerbated by the changing architectures of generative Al
models [48, 57]. Vision transformers [62, 68] and multi-architecture
training [15, 39, 67] show promise for enhancing the detection of
Al-generated images, but adversarial attacks and large architec-
tural changes in generative models continue to affect robustness of
detection.

Figure 1 highlights the increasing complexity of Al-generated im-
ages over the past decade. The changing architectures and increas-
ing photorealism pose a challenge for both humans and machines
to distinguish real from Al-generated images. However, humans
and machines are fundamentally different. For example, humans
can critically reason about an image’s elements and its context [81].
On the other hand, machine learning classifiers for detecting Al-
generated images often oversimplify image authenticity as a ques-
tion of real versus fake and ignore the critical reasoning about
component parts and sub—questions that an ordinary person or
digital forensics expert may consider when evaluating an image’s
authenticity [37].
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Figure 1: Exemplar images of photorealism across a range of generative models. Examples of Al-generated images from 2014 to

2024 [1, 22, 41-43, 66, 69, 92].

2.2 Human perception and evaluation of
Al-generated media

In response to the increasing realism of Al-generated media, re-
searchers have been examining the degree to which humans can dis-
tinguish between authentic and Al-generated media. For example,
researchers found that GAN-generated images of faces are indistin-
guishable from real face portraits [44, 60]. However, for video deep-
fakes, humans are much better than random guessing [24], which
may in part be due to humans’ specialized ability to process the
temporal elements of faces [24, 73]. Researchers found that text—to—
speech voices were rated as lower in quality and clarity than human
voices in 2020 [9] but have reached the point where research partici-
pants cannot tell the difference between short 20-second recordings
of Al-generated voices and authentically recorded voices [5].

Recent research has identified specific cues and heuristics that
people use to evaluate Al-generated media. For example, cues such
as recording settings in the detection of text-to-speech audio [30]
and speaking patterns in political deepfake videos [25]. However,
two studies found that participants rarely attributed their judgments
to specific visual features [29, 84], and in one of these deepfake
studies, researchers found that participants are noticing the artifacts
but rarely linking these to manipulation [84]. With respect to Al-
generated text, research has highlighted that people tend to use
flawed heuristics when attempting to distinguish Al-generated text
from human-written text, like associating grammatical errors with
Al-generation [38].

Social context also plays a significant role in both what dif-
fusion models generate [50] and how people form beliefs about
Al-generated images and their content. For example, researchers
have found detection ability is influenced by shared identity be-
tween the viewer and subject of the content [56]. Furthermore,
researchers have found that white Al-generated faces were dis-
proportionately judged as human more frequently than their real
counterparts [55]. GAN-generated faces in portrait images were
often perceived as more trustworthy than real faces [60], and as a
result, people were less likely to question their authenticity [44].
In instances where Al-generated images are linked to misinforma-
tion, researchers find that labeling Al-generated images and the
associated content as “potentially misleading" instead of simply
“Al-generated" had a stronger influence on curtailing participants’
self-reported intentions to share misinformation [16, 83].

Researchers have approached a number of methods for measur-
ing photorealism perceived by humans. For example, prior research

has examined photorealism with carefully worded questions such
as “Is the image photorealistic?” [47], “Does the image look like
a real photo or an Al-generated image?” [46, 64] and “Whether
this image could be taken with a camera?”[86]. These questions
are useful for assessing participants’ subjective opinions but do
not capture the human ability to distinguish real images from fake
images and can potentially suffer from demand characteristic bias.
Another approach has been to characterize photorealism by ex-
amining the features that can influence realism, such as aesthetics
and semantically meaningful content of an image [65]. A third ap-
proach involves simply defining images as photorealistic if they
are rendered with computer graphics software [51]. In this paper,
we approach photorealism from the psychophysics perspective,
examining participants’ objective performance at distinguishing
real images from fake images [95].

2.3 Categorizing artifacts and implausibilities
in diffusion model-generated images

Previous research on earlier versions of diffusion models catego-
rized the kinds of qualitative failures of diffusion model-generated
images as distorted body parts, impossible geometry, physics viola-
tions, illogical relationships in a scene, and noise [7]. In addition
to obvious issues with hands, feet, eyes, and teeth, research at the
intersection of digital foresnics and Al-generated images shows de-
tails such as corneal reflections [34] and irregular pupil shapes [26]
can also be artifacts. Likewise, violations of physics like implau-
sible shadows, lighting, and perspective errors [19, 20, 72] often
occur in diffusion model generated images that otherwise appear
photorealistic.

3 Methods

We develop a detailed taxonomy of visual features, qualities, and
artifacts that offer cues that an image is Al-generated or not fol-
lowing a three-step process based on the taxonomy development
method proposed by Nickerson et al. [59]. We began by drafting an
initial version of the taxonomy based on a review of visual features
previously identified in Al literacy resources, academic literature,
and online discussions (Section 3.1). We then employed two parallel
processes to develop the taxonomy: iteratively generating and cu-
rating a dataset of 599 images to showcase the taxonomy artifacts
(Section 3.2) and conducting an online, crowdsourced experiment
using these curated images to assess human detection ability (Sec-
tion 3.3). Third, we integrated participant feedback—both accuracy
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Figure 2: Overview of the taxonomy development process. In the background research stage, we reviewed existing literature on visible
features of Al-generated images from a wide range of sources. This included academic literature, practitioner perspectives in Al literacy
articles, and discussions on the photorealism of Al-generated images online. From these features, we developed an initial taxonomy of
artifacts. In the Generation and Curation stage, we used our taxonomy of artifacts to create a dataset of 599 images. Of these images, 149
were real photographs curated from the internet, and 450 were generated in Midjourney, Firefly, and Stable Diffusion through extensive
iteration with photorealistic image generation techniques. We used the dataset of images for an online crowdsourced experiment where we
evaluated participant accuracy in identifying Al-generated images. We iteratively refined the taxonomy based on results from the experiment
and continued monitoring new literature on Al-generated images as generative models evolved.

metrics and thematic comments—back into the taxonomy, allowing
real-world human detection behaviors to inform the final catego-
rization.

While the taxonomy development was guided by data, we ac-
knowledge that subjectivity is inherent in the categorization pro-
cess. To mitigate this subjectivity and ensure methodological rigor,
multiple team members independently identified recurring patterns
and artifacts during image generation and curation, and we rec-
onciled any differences through structured discussion until stable,
consistently observed phenomena emerged. In Figure 2, we show
an overview of the taxonomy development process.

3.1 Initializing the Taxonomy

In addition to reviewing academic literature discussed in Section 2,
we surveyed traditional and social media discussions about distin-
guishing Al-generated images. These included Al literacy resources
on how to identify Al-generated content in media (see Figure S1),
online discussions of Al-generated images in response to viral deep-
fakes, and popular posts discussing photorealism on online forums
for Al image creators (Reddit channels such as r/Midjourney and
r/StableDiffusion) to initialize the taxonomy. These sources high-
lighted several visual cues, including (1) anatomical implausibilities
such as pupil dilation and misaligned eyes [61, 74, 76], teeth [12],
hair [12, 61], fingers, and alignment of body parts [12, 61, 76]; (2)
irregular reflections and shadows [12, 18, 74]; (3) unnatural color bal-
ances [12, 61]; (4) a mismatch in textures and styles within an image
[12, 18, 61]; (5) garbled or nonsensical text [76]; (6) photoshoot-like
perfection and overly cinematic scenarios [77].

While some prior research has suggested that Al-generated face
images can be indistinguishable from real ones [35, 60], more com-
plex scenes, such as group photos have not been thoroughly ex-
plored. We address this by introducing a detailed categorization of
scene complexity across all images. We identified four distinct scene
types that capture varying levels of detail within an image:

Portraits (Single-Subject Close-Up): An image featuring a sin-
gle individual, typically focusing on the face and torso. The indi-
vidual is the primary focus, often set against a blurred or minimal
background. Portraits have relatively low scene complexity.
Full-Figure (Single-Subject Full Body): An image featuring
a single individual whose entire body is visible along with the
surrounding environment. These images exhibit moderate scene
complexity, as they include more details than portraits, such as
the person’s posture and interaction with their setting.

Posed Group: An image featuring multiple people posing for
the camera in a structured manner. These images involve higher
scene complexity due to the presence of multiple subjects, their
interactions, and the added challenge of capturing each person
accurately.

Candid Group: An image of multiple people captured in candid
moments. These images often feature intricate interactions be-
tween people and their environments, representing the highest
level of scene complexity.

3.2 Stimuli Generation and Curation

We created a dataset of 599 images. This image set included 149
real photographs curated from the internet, from which we derived
the scenarios for 450 images that we generated using Al Of the
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Al-generated images, 207 were generated in Midjourney, 133 in
Firefly, and 110 in Stable Diffusion.

Drawing on techniques shared on online forums and articles,
we developed strategies to generate photorealistic images. We first
curated real photographs and then experimented extensively with
the three Al-generation tools to create over 3000 images that depict
similar scenarios as the real images. The final dataset represents
a selection of images from this larger set that we judged to be
not immediately identifiable as Al-generated at first glance. This
selection enabled us to focus on more challenging cases, better
assess participants’ ability to detect subtle artifacts, and enhance
the relevance of our taxonomy in real-world scenarios.

3.2.1 Curating Real Photographs. We sourced real photographs
from online platforms, selecting them to represent diverse scenarios
(e.g., diverse cultural settings with celebrity and non-celebrity fig-
ures engaging in common and uncommon activities) across the four
dimensions of scene complexity Section 3.1. We established these
categories to curate a diverse range of real photographs and ensure
our dataset accurately captures how the features in our taxonomy
may manifest and be perceived in both real and Al-generated im-
ages. We verified that these images were real photographs by con-
firming details like the creation date, photographer, and publisher.
We include a complete list of image sources and verification details
in the following link: https://github.com/negarkamali/Replication-
for-Characterizing-Photorealism-2025/. We used these real images
to inform the prompts to generate images using Al tools.

3.2.2  Generating Images using Al tools. Based on our curated set of
real images, we generated images in Midjourney V5 and V6, Adobe
Firefly Image 2, and Stable Diffusion to depict similar scenarios. In
Midjourney and Firefly, we started the image generation process
by creating a simple prompt describing the scenario. We then pro-
gressively refined the prompts by adding details about the quality
of the image using keywords known to enhance image quality and
resolution from the sources mentioned in Section 3.1. Our prompts
followed the basic structure of: “[Subject description] [action or
pose], [context or setting description], [clothing or appearance de-
tails], [image quality and style attributes], [camera or film type if
applicable]" If the images were insufficiently realistic, then further
details were added to the end of the above prompt such as: [specific
details unique to the scenario], [‘high resolution’, ‘hyper-realistic’,
‘megapixel’, etc.]. The sequence of images in Figure 3 shows the
progression of a prompt and the resulting image qualities as more
details and keywords are added in Midjourney V6.

We also generated images inspired by real scenes of human
interactions found in publicly available news sources and online
media, ensuring they maintained a similar context and zoom level
to real photographs. For example, we used a real reference image of
a Ukrainian soldier getting married from New York Magazine [53].

In Stable Diffusion, we developed custom pipelines in order
to generate images that were more realistic than the outputs of
the original models. Using SD1.5 [71] and SDXL [66] as the base
models, we used techniques such as merging fine-tuned portrait
models and combining outputs of different models to reduce obvious
artifacts and generate highly photorealistic images, particularly for
portraits. We also experimented with generating the same poses in
various styles in order to isolate the impact of certain categories
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of artifacts, as shown in Figure 4. We used ControlNets [93] to
maintain consistent poses while altering other elements such as
models, seed, and prompt scheduling. Additionally, we used Low-
Rank Adaptation (LoRAs) [33] to introduce realistic imperfections
like wrinkles and shorten the depth of field to produce iPhone-style
images. We further refined images by implementing pipelines that
regenerate artifacts in the hands and faces. A refining pipeline is
shown in Appendix S2.

3.3 Crowdsourced Experiment

3.3.1 Image Stimuli. Across the entire experiment timeline, we col-
lected 749,828 responses to whether 1083 images are Al-generated
or real from 50,444 participants. Across the experiment timeline,
we added and removed stimuli for two reasons. First, we included
higher quality and more diverse images over the course of the
experiment as new tools for controlling diffusion models became
available (e.g., ControlNets and LORAs), and we identified prompt
engineering techniques for producing more photorealistic images.
Second, we split the experiment into two phases based on how we
selected the diffusion model-generated images. In the first and main
phase of the experiment, the stimuli were 149 real photographs
and 450 most photorealistic images that our research team could
generate with diffusion models. By comparison, the 482 stimuli in
the second phase were based on generating 11 or more images for
each of the 39 text prompts without curation. This second phase
enables us to identify the effect of human curation (the selection
bias involved in our research team selecting the most photoreal-
istic Al-generated images) relative to no human curation on how
accurately participants can distinguish Al-generated images.

3.3.2  Experimental Design. To ensure the quality of results, we
implemented two measures. First, participants were shown an atten-
tion check image that was clearly Al-generated. Those who failed
to identify this image correctly were excluded from the analysis.
Second, we included an optional checkbox allowing participants to
indicate if they recognized an image from outside the experiment,
allowing us to filter out responses influenced by prior familiarity
with the image.

In the initial version of the experiment from February to May
2024, we prioritized presenting unseen images to participants rather
than maintaining a balanced ratio of real and Al images. In the next
version of the experiment, from May to June 2024, we used stratified
random sampling to select stimuli, ensuring participants saw real
images 50% of the time and Al-generated images 50% of the time. We
repeated the analysis both with and without the data from the initial
version of the experiment and did not find significant changes in
the accuracy distributions. Details of this comparison are provided
in Appendix S1 and S4. To ensure that newly added images to the
stimuli set as described in Section 3.3.1 were adequately represented
in participant responses, we implemented an up-sampling strategy
that prioritized showing images that were labeled fewer than 100
times.

After participants responded to five images, we randomized the
display time of each subsequent image to one of the following
conditions: unlimited time, 20 seconds, 10 seconds, 5 seconds, and
1 second. Participants were informed of the time limit at the start
of each time-restricted trial by an on-screen message (e.g., "You
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Figure 3: Images of Barack Obama generated in Midjourney V5. Images were created by progresively adding details to the prompt

shown below each image: A. “Portrait of Barack Obama." B. “Portrait of Barack Obama, hyperrealistic, megapixel" C. “Portrait of Barack
Obama, sitting in his Oval Office, smiling, hyperrealistic, megapixel." D. “A portrait of Barack Obama sitting in the Oval Office, smiling,
wearing a suit and tie, shot on Kodak, hyperrealistic, grainy, official portrait."

30 Render

Photoshaot iPhane Phota

Figure 4: Stable Diffusion pipeline and outputs of varied styles from the same pose and prompt. A. Four pipelines for generating
four variations of the prompt “photo of a 25 year old man eating a slice of pizza, outside on the grass in a park, sunny, plain clothes" B. A
sample of the variations that we labeled as having the style of a “3D Render", “Photoshoot", or “iPhone photo."

have 20 seconds to view this image") and were instructed to click a
button to reveal the image and begin the countdown.

3.3.3  Participants. We collected data through a public website (de-
tectfakes.kellogg.northwestern.edu) where people could test their
ability to detect Al-generated images. The website remained acces-
sible throughout our taxonomy development, allowing us to gather
responses as we updated image stimuli to reflect improvements in
generation models. In total, 50,444 unique participants contributed
749,828 observations. According to Google Analytics, participants
who visited our website came from 165 countries; the five coun-
tries with the most participants were United States, South Korea,
United Kingdom, India, and Germany. We did not collect additional
demographic data or other data on participants.

3.3.4 Image-level and Participant Level Analyses. We define accu-
racy as a binary measure of whether a participant selected the
correct label (Real/Al-generated) for an image. We aggregated ac-
curacy at two levels: image-level accuracy and participant-level

accuracy. For image-level accuracy measurements described in Sec-
tions 5.1, 5.3, 5.5, 5.4 and 5.8, we aggregated and averaged the
binary responses (0 for "real" and 1 for "Al-generated") provided
by participants for each image. Image-level accuracy was calcu-
lated as the mean of correct identifications across various factors
contributing to photorealism, which are described in each section.
For participant-level accuracy measurements described in Section
5.2, we calculated each participant’s accuracy by averaging their
correct identifications across all viewed images.

We present descriptive statistics to summarize our findings, fo-
cusing on mean accuracies and their associated 95% confidence
intervals (CIs) obtained through non-parametric bootstrapping [36].
We use these measures to describe trends and patterns in the data
without using statistical significance to dichotomize effects. How-
ever, readers can apply that interpretation to the CIs if they desire.
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Figure 5: A screenshot of the experiment website interface.

For a qualitative analysis of the 34,675 optional comments pro-
vided on our website, we utilized GPT-3.5-turbo to extract ten re-
curring themes and map the comments to our taxonomy categories
based on the types of artifacts and patterns reported by participants.

3.3.5 Ethics. This research complied with all relevant ethical regu-
lations. The Northwestern University Institutional Review Board
(IRB) determined that it met the criteria for exemption from further
review. The study’s IRB identification number is STU00220627.

4 Taxonomy of Artifacts in Al-generated
Images

Our taxonomy organizes artifacts and implausibilities that may
appear in Al-generated images into five high-level categories that
are described in further detail in a how-to guide for identifying
diffusion model-generated images[40].

1. Anatomical Implausibilities: This category refers to arti-
facts that appear in the depiction of people within an image. These
include unlikely artifacts in individual body parts, like hands with
extra or missing fingers as shown in Figure 6-1B, or the dispro-
portionately long woman’s neck in Figure 6—-1A. They also include
artifacts in facial features such as an unnaturally empty gaze, overly
shiny eyes, overlapping of the teeth and mouth, and unlikely pro-
portions or configurations of limbs. In images of multiple people,
this includes merged body parts and inconsistent proportions of
body parts across different people. Anatomical implausibilities also
include biometric artifacts such as size, shape, contours, and propor-
tions of specific facial features if the person in the image is known.
These biometric features include eyes, nose structure, mouth edges,
interpupillary distance, ear shape and positioning, as well as dis-
tinctive markers like moles, dimples, and scars [45]
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2. Stylistic Artifacts: This category refers to qualities of en-
tire images or inconsistencies of those qualities within an image.
This includes images of people that are waxy (Figure 6—-2A), glossy
(Figure 6— 2C), shiny, and appear perfect like a model doing a pho-
toshoot. These characteristics often appear in plastic-like skin and
excessively soft hair. Additionally, this category includes noticeably
cinematic, picturesque, and dramatic images that often appear in
artistic photographs like Figure 6-2B. Stylistic artifacts also include
inconsistencies between different subjects or parts of an image.
This may appear as smudge-like distortions at the edges of different
components or differences in resolution that make these parts look
like they are cut out from different scenes.

3. Functional Implausibilities: Functional implausibilities re-
sult from a lack of understanding of the fundamental logic of real-
world mechanical principles. This includes implausibilities in the
objects themselves, their placement within the environment, and
how the people in the image may be holding or using these objects,
such as the woman holding a sandwich sideways in Figure 6-3B.
Objects may also appear unable to function, like the loose strings
of the guitar in Figure 6-3A, or placed in a way that they cannot
function. Functional implausibilities also include distortion in fine
details of the image. The image may present atypical designs in
details like the print, buttons, and buckles on pieces of clothing,
as seen in a backpack strap merging into a denim jacket in Figure
6-3C. Functional implausibilities also include errors in text, such
as distorted or unconventional glyphs and odd spelling errors as
seen in Figure 6-3D.

4. Violations of Physics: This category addresses inconsisten-
cies in the image content that violate the expected logic of physical
reality. Examples include shadows pointing in diverging directions,
as shown in Figure 6—4A, or shadows that do not correspond to
their light sources. Additionally, reflections on surfaces like water,
mirrors, or shiny objects may appear misaligned with their sur-
roundings, as illustrated in Figure 6-4B. Violations of physics also
include depth and perspective issues, like warping and trajectories
that do not align with the rest of the image. These distortions can
also occur in real photographs, for example as seen with fish-eye
lens distortions.

5. Sociocultural Implausibilities: This category includes sce-
narios that are socially inappropriate and unlikely to be seen in the
real world, such as people wearing bathing suits at a funeral and
a selfie with a bear. Violations of social and cultural norms could
also be more subtle, present in details specific to certain cultures
like Figure 6— 5B and 5C attempting to depict Ukrainian and Japan-
ese cultures, respectively. Historical inaccuracies and fake images
of public figures in unlikely settings like 5A of Figure6 are also
examples of sociocultural implausibilities.

5 Accuracy in Distinguishing Al-generated
Images from Real Photographs

In the main phase of the experiment, we collected 539,749 responses
on 599 images from 37,568 participants from February 5, 2024 to
June 22, 2024. Sections 5.1 through 5.7 focus on data from the
main phase of the experiment. The second phase of the experiment
started on June 22 and ended on August 30, with 83,577 responses on
482 images from 3,787 participants. Sections 3.3.1 and 5.8 describe
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1: Anatomical Implausibilities 2: Stylistic Artifacts

4: Violations of Physics 5: Sociocultural Implausibilities

Figure 6: Categories of artifacts in Al-generated images. This figure presents representative examples of common artifacts found in
Al-generated images across five categories: 1. Anatomical Implausibilities: A. Stable Diffusion image of a group of people where one
woman has an abnormally long neck. B. Stable Diffusion image of a man eating pizza where his left fingers appear anatomically implausible.
2. Stylistic Artifacts: A. Firefly image of a woman with a waxy texture. B. Stable Diffusion image with a cinematized style. C. Midjourney
image of a woman with glossy skin. 3. Functional Implausibilities: A. Stable Diffusion image where the guitar strings are not taut. B.
Al-generated image of a woman holding a sandwich in an unlikely way. C. Firefly image where the strap on the red backpack merges into
the denim jacket. D. Al-generated image of a woman wearing a shirt with incomprehensible text. 4. Violations of Physics: A. Stable
Diffusion image where the shadows fall in inconsistent directions. B. Stable Diffusion image of a woman standing in front of a mirror in
which her reflection is inconsistent with the direction of her face. 5. Sociocultural Implausibilities: A. Midjourney image of Donald
Trump being restrained [32]. B. Firefly image depicting Ukrainian servicemen dressed in white shirts and hats that are not commonly part of
the uniform. The flags on their shirts are different, and on the right serviceman, the flag is positioned awkwardly on their back and not their
arm. C. Stable Diffusion image of an unlikely scenario of two Japanese businessmen hugging in a professional setting.
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the influence of human curation of the stimuli on how accurately
participants identify the stimuli as Al-generated or real.

The design of our experiment involves several important design
choices. First, we selected the three models of Midjourney, Firefly,
and Stable Diffusion as the diffusion models. Second, we crafted
prompts to produce realistic outputs across various pose categories
and content types. Third, we curated 450 images from over 3000
images generated to use as image stimuli in the experiment. These
images were selected to maximize realism while also represent-
ing different visual artifacts and implausibilities. Inevitably, these
design choices on models, prompts, and stimuli introduce some
selection bias into the experiment.

Additionally, we implemented two exclusion criteria that should
be considered when interpreting our results. First, for all the anal-
yses in Section 5, we excluded observations where participants
checked the box on the website “I have seen this before”. These
observations, which account for 2% of the total observations, were
excluded because of the strong possibility that participants who
had previously seen the images were already aware of whether
they were fake or real. For these observations marked as having
been seen before, 38% of these observations were on Al-generated
stimuli and 62% were on real images. The image most frequently
reported as ’seen before’ is a real portrait of Martin Luther King Jr,
which was one of the few real images of a well-known celebrity
included in the experiment.

Second, in line with our goals of studying detection ability on
images for which there was some ambiguity, we excluded all images
where participants’ accuracy suggested very little ambiguity. We
operationalized this as accuracy above 90%.

These exclusion criteria remove all observations on 68 fake im-
ages and 4 real images, which represent 14% of observations from
the entire experiment.

In the human-coded analysis of artifacts discussed in Section 5.4,
we apply an additional exclusion criterion to make the coding
tractable. Specifically, we exclude all images accurately identified in
more than 80% of observations. This exclusion criterion focuses the
analysis on the most challenging images by excluding the most egre-
gious distortions that lead to low photorealism (i.e., high participant
accuracy).

5.1 Overall Accuracy

In the main study, participants correctly identified Al-generated
images and authentic photographs in 76% and 74% of observations,
respectively. Accuracy varied substantially across images. Prior
to implementing our accuracy-based exclusion described above,
we found that for Al-generated images, accuracy ranged from 32%
to 99%. Similarly, accuracy on real photographs ranged from 28%
to 92%. Figure 7 shows the distribution of accuracy in both Al-
generated and real images with example images selected from the
top, bottom, and middle deciles of each distribution. At the image
level, the mean accuracy for identifying Al-generated and real im-
ages was 76% (95% CI:[74,77]) and 74% (95% CI:[72,76]), respectively.

Despite our efforts to minimize obvious artifacts, some images
- particularly non-portraits - were challenging to generate with-
out noticeable artifacts. As a result, participants achieved nearly
100% accuracy on a few Al-generated images with obvious features.
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We present examples of these images in Figure 8. In contrast to
Al-generated images, real photographs rarely contain definitive
artifacts and visual cues often seen in Al-generated images, which
limits participants from achieving near-perfect accuracy on real
photographs.

Al-generated Real

Accuracy

Count

Figure 7: Distribution of accuracy scores for real and AI-
generated images with example images representing differ-
ent accuracy levels.

Figure 8: Examples of obviously Al-generated images and their
corresponding accuracy. A. Al-generated portrait with 92% accuracy. B.
Al-generated posed group image with 95% accuracy. C. Al-generated
full-body image with 99% accuracy.

5.2 Participant Level Accuracy

Given the organic nature of participants’ engagement with this
experiment, we did not impose restrictions on the number of images
a participant saw. Most participants in this study provided responses
to at least seven images, but some participants only provided a
single response, and one participant provided 502 responses.

The vast majority of participants (75%) saw 16 or fewer images.
Figure 9A and B present the distribution of participant-level accu-
racy by number of viewed images.

In order to compare participant performance and avoid issues
that arise with differential attrition, we focus on the first ten images
seen by participants who saw at least 10 images, which includes
152,050 observations from 15,205 participants. First, we note that
34% of these participants achieved 90% accuracy or higher on the
first ten images seen. If the Al-generated images were perfectly pho-
torealistic such that the human ability to distinguish is no higher
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Figure 9: Participant-level accuracy and learning trends. A. Scatterplot of participant-level accuracy for Al-generated images. B. Scatterplot of
participant-level accuracy for real images. C. Histogram showing the distribution of accuracy across the first ten images seen by participants who viewed at
least 10 images. D. Learning curve illustrating accuracy trends and classification biases when detecting Al-generated and real images.

than random guessing, then we would have expected only 1% of par-
ticipants to achieve this threshold of accuracy (assuming random
guessing at 50% accuracy, with participants evaluating 10 images
each, achieving at least 9 out of 10 correct responses would occur
with a probability of approximately 1.07%, based on the binomial
probability distribution). Figure 9C shows the distribution of accu-
racy across the first ten images seen by participants who saw at
least 10 images.

In Figure 9D, we present accuracy rates by the number of images
seen. We find that on average, participants begin the experiment by
disproportionally identifying images as fake in 63% of observations.
Notably, this bias is reduced after only a few images.

5.3 Accuracy by Scene Complexity

We find that on average, participants’ accuracy increases as scene
complexity increases. For example, we find that 16% of portraits
appear in the bottom decile of accuracy scores (representing the
highest level of photorealism), whereas only 3% of Al-generated
posed group images appear in the bottom decile. Figure 10 presents
the distribution of accuracy for each category, separately for real
and Al-generated images. For Al-generated images, the mean ac-
curacy was 72.7% (95% CI: [72.4, 72.9]) for portraits, 77.2% (95%
CI: [76.8, 78.6]) for full body, 76.2% (95% CI: [75.8, 76.7]) for posed
groups, and 73.4% (95% CI: [73, 73.8]) for candid groups. For real

images, the accuracy was 71.1% (95% CI: [70, 71.4]) for portraits,
75.5% (95% CI: [75.1, 75.8]) for full body, 76.7% (95% CI: [76.3, 77])
for posed groups, and 74.8% (95% CI: [74.4, 75.1]) for candid groups.

As exemplified in Figure 10C, we note that portraits, relative
to the other levels of scene complexity, typically have less detail,
simpler and more standardized poses, more blurred backgrounds,
and fewer available cues than full-body or group images.

5.4 Accuracy by Presence of Artifacts

In order to analyze accuracy by artifact type, we annotated images
with diffusion model artifact categories from the taxonomy based
on a three-step process. First, four co-authors independently anno-
tated all 218 images with accuracy below 80%, identifying artifacts
and providing detailed explanations for their annotations. Second,
each of these annotations was reviewed and edited by two addi-
tional co-authors. Third, a fifth co-author reviewed all annotations
for consistency. Figures 12A-C and 12D-F provide examples of how
we annotated images, displaying the identified artifact categories,
the reasoning behind their identification, and the associated detec-
tion accuracy for each image. During this process, we observed that
the three main artifact types—anatomical implausibilities, stylistic
artifacts, and functional artifacts—each appeared in nearly a third
of the images we annotated. In contrast, violations of physics and
sociocultural implausibilities were less common, appearing in only
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Figure 10: Scene complexity: Accuracy of real and Al-generated
images by scene complexity levels. Beeswarm plots of image-level
accuracy for each dimension of scene complexity with bootstrapped 95%
confidence intervals. We exclude images identified with above 90%
accuracy in this analysis. A. Real images B. Al-generated images C.
Al-generated images across scene complexities.

20 and 12 images, respectively. In light of this distribution of arti-
facts, Figure 11A presents the distribution of accuracy scores across
images containing at least the three listed artifact types.

Based on our annotations of artifacts in images, we find partici-
pants are less accurate on images with functional implausibilities
than images with anatomical implausibilities or stylistic artifacts.
The mean accuracy on images with at least one functional implau-
sibility, one anatomical implausibility, and one stylistic artifact is
64.1% (95% CL: [63.8, 64.5]), 65% (95% CL: [64.6, 65.4]), and 64.9%
(95% CI: [64.5, 65.3]), respectively. While the accuracy on images
with functional implausibilities is lower than on images with other
implausibilities and artifacts, the mean accuracy scores are simi-
lar. However, this similarity in means masks the differences in the
distribution of accuracy scores, as shown in Figure 11A. We find
that images with participant accuracy scores in the 40-60% range
(which represent images approaching indistinguishability between
real and Al-generated) make up 32.8% of images annotated with
functional implausibilities compared to 21.4% and 22.4% of images
annotated with anatomical implausibilities and stylistic artifacts,
respectively.

We find that images that we annotated as containing multiple
artifacts can still appear photorealistic enough to make detection
difficult for most people. Artifacts vary in levels of visibility, as
shown in Figure 12A-C. While Figure 12A and C contain stylis-
tic artifacts, they are far more apparent in Figure 12B, which is
reflected in its higher detection accuracy. Despite Figure 12A and
C containing multiple artifact categories, they had low detection
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accuracy, suggesting that the presence of multiple artifacts does
not necessarily make images easier to identify and that artifact
visibility is also a contributing factor.

The visibility of artifacts is highly variable, and Figure 12D-
F present examples highlighting this variability. The anatomical
implausibility in the fingers in image Figure 12D is very noticeable,
whereas the functional implausibilities in the tennis racket and shirt
design of Figure 12F are more subtle. The corresponding accuracy
scores for these images— 62% for Figure 12E and 54% for Figure 12F
—reinforce the observation that anatomical artifacts tend to be more
easily detected, while functional implausibilities often require closer
attention and familiarity with depicted objects. The stylistic artifacts
in the cinematization of Figure 12E and plastic-like skin texture fall
in between, further showing the spectrum of detectability across
different artifact categories and visibility.

5.5 Accuracy by Randomized Display Time

By randomizing the display time of images in this experiment, our
results support evaluating how viewing duration influences partic-
ipants’ accuracy. We find that longer viewing times improve per-
formance. With just 1 second of display time, participants are 72%
accurate (95% CI=[71.6, 72.5], 95% CI=[71.3, 72.2]) on Al-generated
and real images, respectively. With 5 seconds of display time, accu-
racy increases to 77% (95% CI=[77.0, 77.8], 95% CI=[76.6, 77.4]) for
both Al-generated and real images, respectively. While accuracy
on real images appears to plateau by 5 seconds of display time, ac-
curacy on Al-generated images increases up to 80% (95% CI=[79.6,
80.4]) at 10 seconds and 82% (95% CI=[81.2, 81.9]) at 20 seconds. Fig-
ure 11B presents the distribution of accuracy scores across display
time conditions. Across the observations where display time was
randomized, we find that the proportion of Al-generated images
that are identified below random chance decreases from 43% when
participants only have 1 second to view the image to 30%, 25%, 17%,
and 17% when participants have 5, 10, 20 seconds, and unlimited
time to view the image.

In some images, Al artifacts can be noticed with a quick glance,
but for others, careful attention to detail is necessary to spot the
artifact. Figure 13 presents three images that require careful atten-
tion, as evidenced by the fact that most participants mark as real
when they are limited to seeing the image for a second but fake
once they take into account the details of the scene.

Accuracy across all artifact types improved with increased dis-
play time. As shown in Figure 11C, participants showed higher
accuracy when images were displayed for longer time (anatomical
artifacts: 63% at 5 seconds vs. 59% at 1 second; stylistic artifacts:
63% at 5 seconds vs. 60% at 1 second; functional artifacts: 60% at 5
seconds vs. 55% at 1 second). For all artifacts, there is a significant
improvement in detection accuracy when increasing display time
from 5 seconds to unlimited.

In Figure 11C, we observe that participants improved the most
in identifying functional artifacts, with an 18% improvement from
1 second to unlimited viewing time. In comparison, anatomical and
stylistic artifacts showed smaller improvements of 11% each over
the same time interval. Unlike anatomical and stylistic implausibili-
ties that can be identified at first glance, functional artifacts often
require a closer look and familiarity with the elements in the image
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Figure 11: Accuracy by artifact types and display times A. Mean accuracy for different artifact types. Distribution of accuracy scores by artifact type
for images with at least one artifact. B. Mean accuracy over display time. Change in mean accuracy across different display time assignments (1 second, 5
seconds, 10 seconds, 20 seconds, and unlimited) with 95% confidence intervals and bee swarm plots of image accuracy for Al-generated and real images. C.
Mean accuracy over time for different artifact types. Change in mean accuracy across different time assignments (1 second, 5 seconds, 10 seconds, 20
seconds, and unlimited) with 95% confidence intervals and bee swarm plots of image accuracy for images with anatomical (pink), functional (green), and
stylistic (blue) artifacts. The x-axis shows the display time intervals, and the y-axis shows accuracy.

as they often appear in parts of the image that are not the main
subject.

5.6 Qualitative Analysis of Participant
Comments

We collected 34,675 comments from participants who filled out the
optional text input box asking participants: “If you think this is
Al-generated, please explain why”” In order to identify themes from
these 34,675 comments, we prompted GPT-3.5 Turbo to identify
10 main themes across these comments. GPT-3.5 Turbo responded
with the following ten themes, which we manually reviewed and
refined to mitigate the ambiguities and generalization typical of
large language models [75]: (1) Image quality focusing on the over-
all appearance, smoothness, and sometimes unrealistic perfection
of image elements; (2) Facial and anatomical inconsistencies where
participants pointed to irregularities in eyes, mouths, noses, skin

texture, expressions, and general human anatomy; (3) Anatomi-
cal and functional anomalies such as deformities, misplaced body
parts, and irregularities in objects or environments; (4) Lighting
and environmental inconsistencies including unnatural lighting,
inconsistent shadows, and reflections; (5) Digital manipulation indi-
cators suggesting suspicions of Al-generation or digital alteration;
(6) Biometric discrepancies particularly unnatural or imperfect body
parts like hands and fingers; (7) Uncanny valley perceptions where
images almost looked human but had subtle unnatural features
that caused discomfort; (8) Contextual incongruities such as un-
realistic scenarios and mismatched social elements; (9) Physical
anomalies highlighting illogical physical interactions within the
images; and (10) holistic authenticity assessment making overall
judgments based on a combination of multiple cues and inconsis-
tencies. Based on these ten main themes, we prompted GPT-3.5 to
label each comment with one of the ten themes. Figure 15 illustrates
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Figure 12: Examples of images with varying artifact visibility. Top row (A-C): Example images showcasing stylistic and functional artifacts with
varying visibility. A. A subtle stylistic artifact in the soft and wispy textures of the woman’s hair and a minor functional implausibility in the atypical design
of her shirt collar (Accuracy: 47%). B. An obvious stylistic artifact due to the overall cinematization of the image (Accuracy: 73%). C. A combination of
multiple artifacts, including anatomical implausibilities in the woman’s hand, functional implausibilities in the table shape and wall panels, and a stylistic
artifact in the soft texture of the woman'’s face (Accuracy: 38%). Bottom row (D-F): Images with anatomical, stylistic, and functional artifacts of varying
visibility. D. Anatomical implausibilities in the fingers of the three students (Accuracy: 84%). E. A stylistic artifact in the cinematized look and plastic-like
texture of the woman’s skin (Accuracy: 62%). F. No obvious anatomical or stylistic artifacts, but closer inspection reveals functional implausibilities: the tennis
racket is asymmetrical, its strings are not taut, and the shirt has irregularly shaped designs with glitch-like inconsistencies (Accuracy: 54%).

Figure 13: Exemplar Al-generated images for which a closer look improves accuracy. A. Accuracy: 38% at 1 second display time to 65% at 20 second
display time. B. Accuracy: 44% at 1 second display time to 82% at 20 second display time. C. Accuracy: 27% at 1 second display time to 70% at 20 second
display time.
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examples of participant comments for four images and how they
were categorized into themes. Figure 14 displays the distribution
of themes across the comments and the related concept from our
taxonomy in parentheses.

Based on GPT-3.5 Turbo, we find that 61% of participants’ com-
ments mentioned relying on anatomical implausibilities. The next
most common concept referred to is stylistic artifacts, which is
mentioned in 30% of comments. Participants mentioned functional
implausibilities in 21% of comments, violations of physics in 15%
of comments, and sociocultural implausibilities in only 4% of com-
ments.

Based on the authors’ annotations of artifacts, we find functional
implausibilities to be the most prevalent, appearing in 58.7% of im-
ages, followed by anatomical implausibilities in 51.4% and stylistic
artifacts in 39.0% of images. We identify violations of physics and
sociocultural implausibilities in only 9.17% and 5.50% of images,
respectively.
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Figure 14: Distribution of themes identified in participant
comments.

While functional artifacts were the most prevalent in human re-
searcher annotated images, they were less frequently mentioned in
participant comments annotated by GPT-3.5. Conversely, anatomi-
cal artifacts were emphasized more in participant comments than
in their prevalence in annotated images.

5.7 Accuracy by Models

In the process of generating the images for this experiment’s stim-
uli set, we noticed that Midjourney, Firefly, and Stable Diffusion
have different capabilities and limitations. For example, we noticed
that Midjourney often produced images with persistent stylistic
artifacts that were challenging to eliminate. Firefly, on the other
hand, frequently exhibited a tendency toward synthetic emotional
expressions, with subjects often appearing unnaturally and overly
cheerful, necessitating multiple iterations to produce more realistic
results. Stable Diffusion struggled significantly with generating
group images, often introducing artifacts such as anatomical in-
consistencies. In light of the limitations to generate non-portrait
images with Stable Diffusion, 75% of the Stable Diffusion-generated
stimuli in this experiment were portraits. On the other hand, 30% of
Midjourney and Firefly-generated images in this experiment depict
portraits. In order to compare the three models fairly, we focus
our comparison on portrait images. Figure 16 presents accuracy
shown on portraits by each of the three models and reveals that
participants’ mean accuracy on Midjourney, Stable Diffusion, and
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Figure 15: Examples of participant comments mapped to themes. A.
“Cosmetic style out of character with vintage setting": Contextual
Incongruities. B. “Skin too smooth, depth of field shallow.": Image Quality,
Lighting Inconsistencies. C. “If this is not Al then it is a staged photograph
like a movie set because of the lighting and he is an actor.": Lighting
inconsistencies, Contextual Incongruities. D. “Group looks pasted onto
background.”: Digital Manipulation Indicators.

Firefly were 76% (95% CI: [75.2, 75.8]), 74% (95% CI: [73.9, 74.8]),
and 73% (95% CI: [72.7, 73.3]), respectively.

06

Accuracy

MidJourmey Firedfly

Model

Stable Diffusion

Figure 16: Accuracy across generative AI models Each point
represents an image. The black dots and error bars show the mean
accuracy and 95% bootstrapped confidence intervals for each model



Characterizing Photorealism in Al-Generated Images
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e i —
e generated by Stable Diffusion and curated by our team (37% accuracy) B. Most
photorealistic of 12 prompt-matched image generations by Stable Diffusion (42% accuracy) C. Median photorealistic of 12 prompt-matched image generations

by Stable Diffusion (59% accuracy) D. Least photorealistic of 12 prompt-matched image generations by Stable Diffusion(83% accuracy)
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Figure 18: Comparing accuracy scores on curated images and uncurated prompt-matched images. A. Scatterplot showing human
detection accuracy of the original curated image compared to human detection accuracy of its most photorealistic regeneration out of 11 to
24 prompt-matched images labeled as re-generations. B. Scatterplot showing human detection accuracy of the original curated image
compared to human detection accuracy of its mean photorealistic regeneration out of 11 to 24 re-generations.

5.8 Accuracy on Human Curated Images vs.
Uncurated Images

Generating photorealistic Al-generated images involves three key
ingredients: the diffusion model, the prompt, and human cura-
tion. In this section, we examine how human curation of diffusion
model-generated images influences the aggregate accuracy scores
of human participants. In order to show this influence, we compare
diffusion model images from the main experiment, which were
curated by our research team, with multiple diffusion model images
generated from the same prompt as the curated images. This com-
parison reveals the increase in photorealism (as measured by the
decrease in participants’ accuracy) on the curated images relative
to the prompt-matched images.

In this second phase of the experiment, we randomly sampled 39
Al-generated images from the main stimuli set, where the sample
was stratified on 10 percentage point wide bins on human detection

accuracy. For each of these 39 images, we generated at least 11
prompt-matched images using Midjourney, Firefly, and the same
pipeline in Stable Diffusion. Figure 17 displays a Stable Diffusion-
generated image from our original stimuli set and three of the
twelve generations using the same prompt. We generated 482 total
additional images, with at least 11 per prompt. These 482 images
were included alongside the 149 real images on the experiment
website.

In Figure 18, we present scatterplots comparing human detection
accuracy on the initial curated images and the best prompt-matched
images in panel A, and mean prompt-matched images in panel B.
We find the human-curated images have lower human detection
accuracy than the best regenerated image in 18 of 39 instances
and the mean re-generated image in 35 of 39 instances. In total,
the human-curated images were perceived to be more photoreal-
istic than 408 of the 482 (84%) uncurated prompt-matched images.
Specifically, we find the marginal value added by human curation
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for images that were initially detected in the range of 30% to 50% is
31 percentage points, 50 to 60% is 23 percentage points, 60-70% is
11 percentage points, 70-80% is 8 percentage points, and 80+% is
4 percentage points. Across the stimuli selected from Midjourney,
Firefly, and Stable Diffusion, the marginal value of human curation
is 7.8, 19.0, and 16.9 percentage points, respectively.

The two panels in Figure 18 illustrate the positive correlation
between accuracy on the human-curated image and accuracy on
the regeneration. This reveals how the prompt influences photore-
alism. The Pearson Correlation Coefficient between accuracy on
curated images and their best, mean, and worst re-generations are
.58, .53, and .32, respectively. This positive correlation suggests the
choice of a prompt plays a significant role in the photorealism of
an image. Figure S5 displays two original curated images where
A is generated by a prompt in which re-generations achieved low
human detection accuracy (a ‘good’ prompt), and B is generated by
a prompt in which re-generations achieved a high human detection
accuracy (a ‘bad’ prompt). Prompts that consistently generate easily
detectable images often have elements that are difficult to generate
and result in artifacts. The prompt “Persian woman astronaut in
astronaut clothes, family photo with husband and two toddlers,
high resolution, realistic” for Figure S5B generates a posed group
image that tends to be easy to detect. On the other hand, the prompt
“American woman faculty portrait, not a close-up, blond" for Fig-
ure S5A generates a portrait image that tends to be perceived as
more photorealistic.

6 Discussion

While diffusion models can generate highly realistic images, most of
the images they produce still contain visible artifacts. In particular,
we find that only 17% of diffusion model-generated images are mis-
classified as real at rates consistent with random guessing. Notably,
this misclassification rate increases to 43% when the viewing dura-
tion is restricted to 1 second. By curating a dataset of 599 images
and conducting a large scale digital experiment, we can begin to
answer fundamental questions about what drives the appearance
of photorealism in diffusion model-generated images.

First, we find that images with greater scene complexity tend
to introduce more opportunities for artifacts to appear, making it
easier for participants to detect Al-generated images. Our results re-
veal that participants were less accurate at identifying Al-generated
portraits compared to more complex scenes, such as those involving
multiple people in candid settings. Based on qualitative analysis of
the images, we identify three main reasons for this difference. First,
portraits often feature a single person against a blurred background,
which can obscure details and provide fewer cues compared to full-
body or group images. Second, portraits typically involve fewer and
simpler poses, focusing only on the face and torso, leaving fewer
opportunities for errors or inconsistencies to be apparent. Third, the
prevalence of edited and retouched portraits in real-world photog-
raphy complicates the distinction between real and Al-generated
portraits, addressing the question of how subject type and context
(e.g., unknown people vs. public figures) influence the perceived
authenticity of an image. In contrast, more complex images, like
full-body or group shots, involve a greater number of elements,
increasing the likelihood of noticeable errors or inconsistencies.
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Similar to our results on Al-generated images, we find that real
images with lower scene complexity are also harder to identify as
real.

Second, we identify five high-level categories of artifacts and im-
plausibilities and find that the easiest images to identify as diffusion
model generated are the ones with anatomical implausibilities, such
as unrealistic body proportions and stylistic artifacts like overly
glossy or waxy features.

Third, by randomizing display time, we identify the relationship
between how long an individual looks at an image and their ac-
curacy at distinguishing between real and Al-generated images.
Specifically, we find that participants’ accuracy at identifying an
Al-generated image upon a quick glance of 1 second is 72% and
increases by 5 percentage points with just an additional 4 seconds
of viewing time and 10 percentage points when unconstrained
by time. Given the nature of rapid scrolling on social media and
how much time people have to see advertisements as they pass
by billboards on a highway, these results reveal the importance
of attentive viewing of images before making judgments about an
image’s veracity.

Fourth, we find that human curation had a notable negative
impact on participants’ accuracy compared to uncurated images
generated by the same prompts as the human-curated Al-generated
images. In particular, the images curated by our research team were
harder to identify as Al-generated than 84% of the uncurated images
generated using the same prompts as the curated images. This
finding reveals the limitation of state-of-the-art diffusion models
in producing images of consistent quality. It also suggests that
human curation is a bottleneck to generating fake images at scale.
The process of generating high-quality Al images is inherently
iterative—users refine prompts and select outputs until they achieve
their desired result. This fundamental aspect of Al image generation
is evident across all applications, from advertising and marketing
to education and beyond. While concerns exist about fake images
being used to mislead or impersonate, many use cases exist for
business and educational applications [27, 31, 78]. The critical role
of human curation in this iterative process further emphasizes
how the photorealism of images produced by diffusion models
depends not only on the capabilities of the diffusion model but
also on the quality of human curation, choice of prompts, and
context of the scene. Given the importance of these factors beyond
the generative Al model, these results reveal the importance of
considering these factors in research examining human perception
of Al-generated images. Without considering these elements, it is
possible to produce biased findings showing Al-generated images
are more or less realistic than they really appear in real-world
settings.

The taxonomy offers a practical framework on which to build Al
literacy tools for the general public. We synthesized information
from diverse sources such as social media posts, scientific literature,
and our online behavioral study with 50,444 participants to system-
atically categorize artifacts in Al-generated images. Through this
process, we identify five key categories: anatomical implausibilities,
which involve unlikely artifacts in individual body parts or incon-
sistent proportions, particularly in images with multiple people;
stylistic artifacts, referring to overly glossy, waxy, or picturesque
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qualities of specific elements of an image; functional implausibili-
ties, arising from a lack of understanding of real-world mechanics
and leading to objects or details that appear impossible or non-
sensical; violations of physics, which include inconsistencies in
shadows, reflections, and perspective that defy physical logic; and
sociocultural implausibilities, focusing on scenarios that violate so-
cial norms, cultural context, or historical accuracy. Our taxonomy
builds upon the Borji 2023 taxonomy [7] and focuses on images that
appear more realistic at first glance, which is useful for comparing
and contrasting real photographs with diffusion model generated
images for revealing the nuances of the artifacts and implausibil-
ities [40]. Moreover, this taxonomy offers a shared language by
which practitioners and researchers can communicate about ar-
tifacts commonly seen in Al-generated images and exposes the
persistent challenges that can help people identify Al-generated
images.

6.1 Future Work and Limitations

In addition to aiding in identifying Al-generated content, the taxon-
omy offers insights into the open problems for producing realistic
Al-generated images. Future work may explore integrating such
taxonomies into model evaluation frameworks to provide iterative
feedback during the development of generative models. As models
advance to address the weaknesses presented in this taxonomy, new
and more subtle artifacts may emerge, requiring future updates to
this taxonomy. This dynamic interplay between detection and gen-
eration capabilities demonstrates why we need to maintain robust
human detection abilities even as models evolve. We acknowledge
the potential dual use of these insights to create more deceptive
synthetic media, and we believe that transparent documentation of
artifacts does more good than harm by offering detection strategies
and an opportunity to develop general awareness in the public.

Large-scale digital experiments with participants who participate
based on their own interests come with certain limitations. First,
we did not collect demographic data from participants. Participants
were not recruited for this experiment; instead, participants found
the experiment organically and participated. Given the organic
nature of the participation, we prioritized maximizing engagement,
which involves questions unrelated to distinguishing Al-generated
and real images like demographic questions. While this approach
enabled substantial data collection, it limits analysis by excluding
factors like age, gender, and cultural background that may influence
detection.

Second, we provided feedback on the correct answer after each
participant made an observation, which has the potential to intro-
duce learning effects. Future research could address these open
questions by collecting demographic data to design more inclusive
Al literacy tools and evaluating how performance changes with
and without feedback.

This research focused on images generated by state-of-the-art
generative models available in 2024, and the findings are inherently
tied to the state of diffusion models and generative Al technolo-
gies as of 2024. In the future, models are likely to change, and
the somewhat visible errors that emerge will also likely change.
Past state-of-the-art GAN models such as StyleGAN2 [43] and Big-
GAN [8], often produced more noticeable artifacts in facial features,
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color balance, and overall photorealism, making their outputs more
easily distinguishable. Nonetheless, the current taxonomy on dif-
fusion models points out elements like anatomical implausibilities
and stylistic artifacts that can be mapped to the facial feature and
color balance cues. These recurring issues offer evidence of the
taxonomy’s robustness to differences across model generations,
but future studies should explore how the taxonomy may need to
adapt to these changes, which may involve adding or removing
categories or may involve further identifying nuances within these
categories. As an example of how this taxonomy may be applied to
Al-generated video, Figure S6 presents an example of an anatomical
implausibility that we never saw in diffusion model-generated im-
ages because it involves a temporal inconsistency. Future research
on the realism of Al-generated audio and video may also consider
following the three-step process involved in building this taxonomy
for images generated by diffusion models. Based on first surveying
Al literacy resources, academic literature, and social media, second
generating media with state-of-the-art models, and third collecting
empirical data on the human ability to distinguish Al-generated
media from authentically recorded media, researchers can build
empirical insights towards characterizing realism and categorizing
the artifacts in Al-generated media.

The empirical insights on the photorealism of Al-generated im-
ages and the resulting taxonomy designed to help people better
navigate real and synthetic images online lead to a practical research
question: How can Al literacy interventions improve people’s ability
to distinguish real photographs and Al-generated images? Future
research may address this question via randomized experiments
comparing a control group with no intervention to a treatment
group that receives training based on the taxonomy presented in
this paper. Likewise, future research may explore this with just-in-
time interventions to direct people’s attention to the cues identified
in the taxonomy.

7 Conclusion

Our work contributes empirical insights on the photorealism of
Al-generated images and a taxonomy of artifacts commonly found
in Al-generated images, organized into five categories: anatomi-
cal implausibilities, stylistic artifacts, functional implausibilities,
violations of physics, and sociocultural implausibilities. We find
that the photorealism of Al-generated images depends on the scene
complexity of the image, the kind of artifacts and implausibilities,
if any, detectable in an image, the duration of visual attention to
an image, and the quality of human effort to select appropriate
prompts and curate images. A question such as “How photorealistic
are state-of-the-art diffusion models” may sound simple, but the
answer is more complex and depends on many details, including
what images are generated and selected, how photorealism is mea-
sured, what real images are included in the experiment, and how
much time, skill, and effort a human participant has and willing
to offer. This paper offers an initial exploration into how we can
address this question and develops a practical taxonomy that offers
scaffolding for building Al-literacy interventions to help people
navigate the capabilities and limitations of diffusion models and
whether an image is Al-generated or not.
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A Further Methodological Details

Figure S1: AI-Generated Images from New York Times Quiz A. NYT’s explanation for evidence pointing to this image as Al-generated
is: “Though the resemblance to President Biden is striking, he would not be wearing military fatigues as a civilian.” [76] B. NYT’s explanation
for evidence pointing to this image as Al-generated is “One giveaway in this image is the badge, which includes garbled text.” [76]

A B

waration in S01.5

Hand Refiner

Figure S2: Image generation process in Stable Diffusion A. Four stage image generation pipeline where the image is first generated in
SD1.5. The output image is then encoded as latent and upscaled to be re-generated in SDXL with ControlNets applied for pose consistency.
This is passed to the face refiner [49] which detects dominant and background faces in the image via YOLOv8 [90] and re-generates them
using an SDXL pipeline. Finally, the resulting image is passed to the hand refiner [49] which detects hands in the image via YOLOv8 and
predicts the hand pose used to guide the re-generation of the hands. B. Faces in the image before and after the face refining process C. Hand
refining process. The left image shows the initial generation of the hand. The center image shows a predicted skeleton for the hand that is
used for a ControlNet that guides the re-generation of the hand shown in the image on the right.
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According to a New York Times (NYT) quiz, qualities that typ-
ically signify AI generation include missing fingers, misaligned
eyes, repeated elements, and garbled or nonsensical details [76].
Examples are shown in S1. The NYT quiz also discusses qualities
that may cause a real image to look Al-generated, such as repeated
cropping and compression that often happens over social media.

A screenshot of the pipeline, along with images before and after
refinement, is shown in Figure S2.

Figure S3 displays more examples of the four pose complexities
and their average accuracies.

Kamali et al.
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A Acc: 25%

G Acc: 66%

J Acc: 57%

M Acc: 31% N Acc: 66% O Acc: 75% P Acc: 87%

Figure S3: More examples of the four pose complexities and their average accuracies. The first row shows Portraits, the second row
Full Body images, the third row Posed Groups, and the last row Candid Groups.
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A.1 Robustness Check: Dataset Comparison

To ensure the validity of our conclusions, we conducted a robustness
check comparing the results from our full dataset against a subset
excluding data collected before May 10th, 2024. This comparison
addresses potential biases introduced by the initial experimental
design, which did not implement stratified randomization as men-
tioned in Section 3.3.2.

Table S1 presents the accuracy metrics for both the full dataset
and the dataset excluding pre-May 10th data. The table includes
overall accuracy, as well as specific accuracy for Al-generated and
real images, along with their respective 95% confidence intervals.

Table S1: Comparison of accuracy: Full Dataset vs. Dataset
excluding data before May 10th

Dataset Overall Al-generated Real
Accuracy  95%Cl  Accuracy  95%Cl  Accuracy  95%CI

Full Dataset 075  [074,076] 076  [0.74,077] 073 [0.71,075]

Dataset excluding data before May 10th 075 [0.74,076] 076 [0.75,0.77] 07201 [0.70,0.74]

Figure S4 visualizes the distribution of image accuracies for both
datasets. This comparison allows for direct observation of any
potential shifts in accuracy distributions between the full dataset
and the subset, excluding early data. This robustness check supports
the validity of using the full dataset in our main analysis.

Full Dataset
30 | 3 Without Pre-May 10th

(.2 (.4 086 0.8 1.0
Accuracy

Figure S4: Comparison of accuracies between the full dataset
and the dataset excluding data before 10th data.
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B Curated and Uncurated Al-generated Images

Figure S5: Example images generated by consistently photorealistic and consistently detectable prompts. A. Curated image
generated with a consistently photorealistic prompt: “American woman faculty portrait, not a close-up, blond." B-D Reprompted images
generated with the same consistently photorealistic prompts. E. Curated image generated with a consistently detectable prompt: “Persian
woman astronaut in astronaut clothes, family photo with husband and two toddlers, high resolution, realistic." F-H Reprompted images of
the same consistently detectable prompts.
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C Future Work on Videos

Figure S6: Example frames from an Al-generated video with a temporal anatomical implausibility. 9 frames from a video generated
by OpenAT’s Sora diffusion-transformer model where the subject’s right leg morphs into the left leg somewhere between E and J. Each frame
is separated by 1/10 of a second. This particular artifact fits into the anatomical implausibility category of the taxonomy, but it’s different
from any anatomical plausibility seen in diffusion model-generated images. In particular, this implausibility has a temporal element: the
transition from A to L involves the subject’s right leg becoming her left in a split second, which does not fit with what we know about
human anatomy.
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