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Abstract 
Judging the similarity of visualizations is crucial to various appli-
cations, such as visualization-based search and visualization rec-
ommendation systems. Recent studies show deep-feature-based 
similarity metrics correlate well with perceptual judgments of im-
age similarity and serve as effective loss functions for tasks like 
image super-resolution and style transfer. We explore the applica-
tion of such metrics to judgments of visualization similarity. We 
extend a similarity metric using five ML architectures and three 
pre-trained weight sets. We replicate results from previous crowd-
sourced studies on scatterplot and visual channel similarity per-
ception. Notably, our metric using pre-trained ImageNet weights 
outperformed gradient-descent tuned MS-SSIM, a multi-scale simi-
larity metric based on luminance, contrast, and structure. Our work 
contributes to understanding how deep-feature-based metrics can 
enhance similarity assessments in visualization, potentially improv-
ing visual analysis tools and techniques. Supplementary materials 
are available at https://osf.io/dj2ms/. 

CCS Concepts 
• Human-centered computing → Heuristic evaluations; Vi-
sualization design and evaluation methods; • Computing 
methodologies → Computer vision tasks; Visual inspection. 
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evaluation, similarity perception, replication studies, deep-feature-
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1 Introduction 
Similarity is a fundamental construct in human cognition, under-
lying numerous mental processes, including categorization, rea-
soning, and decision-making [52]. Human-perceived similarity 
has been studied extensively in psychology and cognitive science 
[45, 62] and has been leveraged in applications such as image re-
trieval [28] and human-in-the-loop categorization [63, 75] in recent 
years [61]. Recent studies in computer vision have shown that 
deep-feature-based similarity metrics correlate well with percep-
tual judgments of image similarity [87] and serve as effective loss 
functions for tasks like image super-resolution [39] and style trans-
fer [21]. The success of these applications in computer vision raises 
an intriguing question: Can similar approaches be effectively applied 
to the domain of information visualization? 

Judging visualization similarity is crucial for various applications, 
ranging from visual search [83] and visualization recommendation 
[86] to automated design and sequencing [6, 13]. Knowing whether 
a visualization is robustly discriminable across a range of datasets, 
i.e., whether it consistently maintains clear visual distinctions across 
a range of datasets, is crucial for effective communication and 
design. The idea that perceived visual structure should correspond 
with structure in the underlying data is recurring in multiple works, 
such as in the principle of visual-data correspondence by Kindlmann 
and Scheidegger [44], in the principle of congruence by Tversky et al. 
[71], in similar principles proposed in multi-view visualization [59, 
60], and in the visual embedding model by Demiralp et al. [14]. 
However, such knowledge is challenging to obtain at design time 
and costly to evaluate empirically [74]. 

This paper investigates the use of deep-feature-based similar-
ity metrics to approximate similarity perception in information 
visualization. We offer two primary research contributions. 

(1) While deep neural networks are widely used in visualization 
for various tasks [76, 84], our work is the first to implement a 
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domain-independent transfer learning technique from com-
puter vision [49, 87] to an information visualization setting. 
We extended prior work on deep-feature-based similarity 
metrics using weights trained on Stylized ImageNet [23], a 
modified ImageNet-1K dataset where images are artistically 
stylized while preserving their original content and labels. 
Given Stylized ImageNets’ increased object detection per-
formance, we hypothesized it would benefit information 
visualization tasks. Our results suggest that transfer learning 
from computer vision can reduce the time and resources 
needed to develop effective models when applied with cau-
tion to information visualization, potentially opening up 
new avenues for cross-domain research and applications. 
However, we did not observe any significant performance 
differences between models trained on Stylized ImageNet 
versus ImageNet-1K. 

(2) We assess the benefits and limitations of applying deep-
feature-based similarity metrics in information visualization 
by conceptually replicating and comparing our results to 
two crowd-sourced studies that collected similarity judg-
ments [13, 74]. These studies are well-suited for exploring 
visualization similarity as they offer diverse datasets and 
methodologies, allowing us to systematically examine how 
deep-feature-based similarity measures perform across dif-
ferent visualization contexts and analytical approaches. 

(a) Our first replication (Section 5) reveals that when using 
certain deep learning (DL) networks, which have not been 
trained on scatterplots, deep-feature-based similarity met-
rics achieve better clustering alignment with human judg-
ments of scatterplot similarity than traditional computer 
vision metrics whose parameters are optimized on the set 
of scatterplots. 

(b) Our second replication (Section 6) reveals that for visual 
channels like color and shape, deep-feature-based simi-
larity metrics struggle to capture what humans perceive 
to be similar. However, these metrics perform well when 
assessing the visual channel of size. 

We speculate that the strong performance of deep-feature-based 
similarity metrics in capturing scatterplot similarity (Section 5) is 
due to their ability to capture patterns in spatial distributions of 
visual elements. This suggests potential applications to other visu-
alization types that also encode data through spatial arrangements. 
These metrics struggle to capture judgments of color and shape 
similarity (Section 6), which may be due to humans making these 
judgments based on factors beyond spatial features, such as cultural 
association. The metrics’ better performance with size judgments 
likely stems from its more direct relationship to spatial distribution. 
These results highlight both opportunities and limitations in apply-
ing deep-feature-based similarity metrics trained on natural scenes 
to information visualization. 

2 Background 

2.1 Perceptual Similarity Metrics 
Computer vision has long studied the problem of measuring the 
quality of an image for downstream tasks such as lossless compres-
sion. Due to the costly nature of running experiments to collect 

human data, significant research effort has been devoted to deriv-
ing an objective metric that can approximate human perception. For 
example, if two images appear similar to the human eye, then their 
“distance”, measured by this metric, should be close to 0. 

Traditional metrics, such as Manhattan L1, Euclidean L2, Mean 
Squared Error (MSE), and Peak-Signal-to-Noise-Ratio (PSNR), rely 
on point-wise pixel differences, which offers computational ease 
but poorly matches perceived visual quality [18, 24, 77]. Subse-
quently developed patch-based metrics rely on the hypothesis that 
the human visual system is highly adapted for extracting structural 
information. One such metric is Similarity Index Measure (SSIM) 
[77], which compares “local patterns of pixel intensities that have 
been normalized for luminance and contrast”. One popular exten-
sion of SSIM is Multi-Scale SSIM (MS-SSIM) [78], which extends 
SSIM by evaluating image similarity at multiple scales, capturing 
both local and global structural information. Nevertheless, SSIM 
and MS-SSIM often do not capture the nuances of human vision 
when more structural ambiguity is present [64] and fall short for 
more complex downstream tasks, such as image generation and 
image synthesis. 

More recently, researchers have leveraged deep neural networks 
(DNN) for tasks beyond classification to develop metrics such as 
LPIPS [87], PieAPP [57] and DISTS [16] that utilize deep features, 
i.e., features obtained through deep-learning architectures trained 
on the ImageNet dataset [15]. One of the primary motivations for 
utilizing these deep-feature-based metrics is that they can trans-
form pixel representations to a space that is more perceptually 
uniform [16]. They have also demonstrated excellent empirical per-
formance for downstream tasks such as image super-resolution [39] 
and style transfer [21]. However, their application to the perceptual 
similarity of information visualization remains unexplored, perhaps 
due to the uncertainty about whether features learned from natural 
scenes can effectively transfer to the often abstract and stylistic 
domain of information visualization — a gap this work addresses. 

2.1.1 Collecting Human Similarity Judgments. Regardless of the 
underlying mechanics, the usefulness of similarity metrics is ulti-
mately determined by how well they align with human judgment. 
Traditional Image Quality Assessment (IQA) databases, such as 
LIVE [66], CSIQ [50], and TID2013 [56], collect Mean Opinion Scores 
by asking participants to provide subjective ratings for pairwise 
images on a specified numerical scale (e.g., Likert scales). More 
recent IQA databases, such as BAPPS [87], use two-alternative 
forced choice (2AFC) experiments to collect similarity judgment 
on a dataset of images applied with low-level distortions. Beyond 
low-level perceptual similarity, the THINGS database collected be-
havioral odd-one-out similarity judgments [31, 32] on everyday 
objects to generate interpretable object dimensions predictive of 
behavior and similarity, and the NIGHTS dataset [20] collected 
2AFC judgment on diffusion-synthesized images perturbed along 
various dimensions. 

Aside from the computer vision/machine learning databases men-
tioned above, information visualization studies have also collected 
data on similarity judgments (albeit on a much smaller scale). Demi-
ralp et al. [13] collected similarity judgment via five different tasks 
on different visual channels, such as color, size, and shape. Pandey 
et al. [53] asked participants to group scatterplot thumbnails and 
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Figure 1: A general framework for comparing two information-processing systems (e.g., humans vs. machines), inspired by 
the framework proposed by Sucholutsky et al. [68]. Framework uses Demiralp et al.’s experiment on the perception of shape 
similarity as one concrete example [13]. 

compared their results to scatterplot diagnostics (scagnostics). Ma 
et al. [51] collected similarity judgment on scatterplots and trained 
a deep neural network, ScatterNet, to learn features that capture 
the human perception of scatterplot similarity. Beyond scatterplots, 
Gogolou et al. [25] collected similarity perception of time-series 
plots by asking participants to select among four options which 
time-series chart appears most similar to the reference chart. Others 
have collected judgments of visualization similarity in the form of 
transition costs when moving from one visualization to the next 
in a sequence [35, 43]. In this paper, we conduct conceptual repli-
cations of the experiments by Demiralp et al. [13] and Veras and 
Collins [74] (that uses Pandey et al.’s data [53]). 

2.2 Comparing Human and Machine Behavior 
Given the remarkable performance of DNNs at image classification, 
research across different fields — computer vision, cognitive science, 
neural science, to name a few — has sought to answer whether 
DNNs are good models of the human visual system. To answer 
this question requires comparing DNNs to the human visual sys-
tem. Existing research has done this both at the mechanistic level 
(i.e., comparing internal representations) and functional/behavioral 
level (i.e., comparing outcomes). See Sucholutsky et al. [68] for an 
overview of comparing and aligning representations across differ-
ent information processing systems. 

2.2.1 Functional Similarity. At the outcome level (Fig. 1), much 
work has focused on comparing and modeling classification perfor-
mance [61]. Researchers have found that small perturbations that 
are imperceptible to humans can dramatically affect model classifi-
cation decisions [26], and that texture and local image features drive 
classifiers [2, 23], whereas humans are more strongly influenced 
by Gestalt shape [1]. Beyond comparing classification accuracies, 
other work [22] has looked at additional outcome measures such 
as trial-by-trial error consistency. 

In information visualization, Haehn et al. [29] trained four differ-
ent convolutional neural network (CNN) architectures on five differ-
ent visualization tasks to reproduce Cleveland and McGill’s graphi-
cal perception experiments [10]. They found that when compared 
to human performance baselines, CNNs are not “currently a good 
model for human graphical perception” — while CNNs performed 

better than humans in elementary perceptual tasks (e.g., estimating 
quantities from visual marks), humans significantly out-performed 
CNNs in visual relation tasks (e.g., comparing bar lengths). Yang et 
al. [85] trained DNNs on human correlation judgments in scatter-
plots across three studies and found that a subset of their trained 
DL architectures (e.g., VGG-19) has comparable accuracy to the 
best-performing regression analyses in prior research. The main 
difference between our work and Haehn et al. [29] is that we are 
not training network parameters on any domain-specific dataset 
but instead rely on pre-trained ImageNet and Stylized ImageNet 
weights. The main difference between our work and Yang et al. [85] 
is that we utilize DL architectures that are trained on natural im-
ages for classification and not on human judgment. Our metrics 
are therefore information-visualization-domain-independent and 
can be applied directly to any pair of visual stimuli,1 whereas the 
trained weights and architectures of Haehn et al. [29] and Yang 
et al. [29] may face challenges in generalizing to contexts beyond 
their specific training domains. 

2.2.2 Representational Similarity. At the internal representation 
level (Fig. 1), numerous techniques exist, and the most popular 
one is Representational Similarity Analysis (RSA), a multivariate 
technique introduced by Kriegeskorte et al. [45]. RSA compares 
different representations of the same set of stimuli, such as neu-
ral activity patterns, computational model outputs, and behavioral 
data, by computing similarity matrices for each representation and 
then comparing these matrices to assess how well different repre-
sentations align with each other. Using RSA, Khaligh-Razavi and 
Kriegeskorte [41] compared the representational geometry of ob-
ject recognition in the human brain with that of various computer 
vision models, and they found that a deep convolutional network 
performed best in both categorization and explaining inferior tem-
poral cortex representations. For more on calculating similarity in 
psychological space, see Roads and Love [62] for an overview. 

2.2.3 Texture vs. Shape. Most DNN models that perform well on 
Brain-Score [65] and other prediction metrics do not rely on global 
shape when classifying objects, contrary to the fundamental con-
clusion from psychological research that humans largely rely on 

1 ... so long as their spatial dimensions exceed 64 × 64. Details in Section 3. 
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shape when identifying objects [3]. DNNs (such as the CORnet-S 
model [48], one of the best models of human vision) largely classify 
objects based on texture and local shape features [79]. 

Prior work [23] showed that ML architectures can learn shape-
based representations when trained on Stylized ImageNet, a version 
of ImageNet where images have their visual appearances trans-
formed by applying artistic styles. ML architectures trained on the 
Stylized ImageNet have better object detection performance and 
robustness towards a wide range of image distortions. To the best 
of our knowledge, existing deep-feature-based similarity metrics 
have not examined the performance of deep features extracted 
from networks trained on stylized images. We investigate whether 
the robust performance of ML architectures trained on Stylized 
ImageNet can transfer to the domain of information visualization, 
where humans tend to make judgments based on shape by extend-
ing the existing implementation of deep-feature-based similarity 
metrics, with details in Appendix B. 

3 Research Goals and Experiment Overview 
Our ultimate goal is to assess the benefits and limitations of deep-
feature-based perceptual similarity metrics for information visual-
ization. For this goal, we conceptually replicated two experiments: 

(1) Veras and Collins [74] (using data from Pandey et al. [53]) 
(2) Demiralp et al. [13] 
Both studies provide high-quality, crowd-sourced human sim-

ilarity judgments gathered on stimuli with varying visualization 
complexity. Together, these studies cover both holistic similarity 
judgments of data visualizations and fine-grained perceptual com-
parisons of visual encodings. 

Our replication experiments follow a consistent procedure across 
both studies: assign pairwise distances between stimuli from the 
original studies using deep-feature-based similarity metrics, analyze 
the results using the same procedures as the original papers, and 
compare our results to the analyzed human judgment results in the 
original studies (Fig. 1). Due to the inability of deep-feature-based 
similarity metrics (specifically AlexNet) to process images with 
dimensions smaller than 63 × 63, we generated new stimuli of size 
224 × 224 when replicating Demiralp et al. [13] in Section 6. 

4 Implementing Deep-Feature-Based Perceptual 
Similarity Metrics 

We implement deep-feature-based perceptual similarity metrics 
that use ML architectures and three pre-trained weights. Our im-
plementation primarily follows the implementations of Zhang et al. 
[87] and Kumar et al. [49]. We focus our attention on supervised 
models trained on the ImageNet-1k dataset [15], which contains 1, 
281,167 training images, 50,000 validation images, and 100,000 test 
images. 

Given two images 𝑥 , 𝑦 ∈ R𝐻 ×𝑊 ×𝐶 , where 𝐻 , 𝑊 , 𝐶 correspond 
to height, width, and channel, and a network F , the “perceptual” 
distance between 𝑥 and 𝑦 is the weighted sum of squared differences 
between feature activations of 𝑥 and 𝑦 across multiple layers and 
spatial positions. Formally, it is defined as 

𝑑 (𝑥, 𝑦) = 
∑︁ 

𝑙 ∈ L 

1 
𝐻𝑙𝑊𝑙 

∑︁ 

ℎ,𝑤 

𝑤𝑙 ⊙ 
 
𝑥𝑙 
ℎ,𝑤 − 𝑦𝑙 

ℎ,𝑤 

 2 

2 
(1) 

where L is the set of layers in network F from which features are ex-
tracted2 , 𝑥𝑙 , 𝑦𝑙 ∈ R𝐻𝑙 ×𝑊𝑙 × 𝐶𝑙 are the unit-normalized3 deep feature 
maps extracted by F at layer 𝑙 , and vector 𝑤𝑙 ∈ R𝐶𝑙 is a channel-
wise scaling vector for the difference between unit-normalized fea-
ture maps 𝑥𝑙 and 𝑦𝑙 at spatial location (ℎ, 𝑤 ). 

Using out-of-the-box pre-trained weights from ImageNet or Styl-
ized ImageNet corresponds to 𝑤𝑙 = 1𝐶𝑙 ∀𝑙 ∈ L, where 1𝐶𝑙 is a 
vector of ones with length 𝐶𝑙 , the number of channels at layer 𝑙 . In 
other words, we use the extracted deep features without any scaling 
or linear calibration. Using LPIPS (version 0.1) 4 corresponds to us-
ing ImageNet pre-trained weights scaled by parameters 𝑤𝑙 learned 
from BAPPS [87], a dataset of 16K patches derived by applying ex-
clusively low-level distortions to the MIT-Adobe 5k dataset [5] for 
training and the RAISE1k data [12] for validation. In other words, 
𝑤 𝑙 , 𝑙 ∈ L constitute a “perceptual calibration” of a few parameters 
in an existing feature space [87]. Zhang et al. [87] showed that 
LPIPS achieve better performance than traditional metrics (e.g., 𝐿2, 
SSIM [78]) and correlates well with human similarity judgments. 

Our selection of DNN architectures is motivated by both theo-
retical considerations and empirical evidence from computer vision 
and prior work on training and predicting human similarity judg-
ments [85]. We build upon Zhang et al.’s [87] finding that deep 
features from CNNs trained on natural images correlate strongly 
with human perceptual judgments. Our architectural choices span 
from SqueezeNet [36] and AlexNet [47] to more complex Residual 
Nets [30] and Efficient Nets [69], selected to systematically investi-
gate how different levels of hierarchical feature extraction affect 
visualization similarity judgments. This range of architectures, cov-
ering ImageNet-1K classification accuracies from 56.522% (AlexNet) 
to 83.444% (EfficientNet B5), allows us to test whether improved 
natural image classification correlates with better visualization 
similarity assessment. 

While newer architectures like Vision Transformers [17] exist, 
we prioritized CNNs for their architectural flexibility and relevance 
to our context: (1) CNNs allow processing of different input sizes, 
unlike Vision Transformers which require fixed input dimensions; 
(2) CNNs provide scale-invariant feature detection through their hi-
erarchical structure; and (3) CNNs enable direct comparability with 
validated perceptual similarity metrics like LPIPS [87]. This flexibil-
ity is particularly important as our implementation builds on LPIPS, 
which has been rigorously validated against human perceptual 
judgments using the Berkeley-Adobe Perceptual Patch Similarity 
(BAPPS) dataset at 64 × 64 resolution. Importantly, our approach is 
architecture-agnostic and can be readily extended to any CNN ar-
chitecture that provides hierarchical feature maps, enabling future 
comparisons to additional architectures. 

We use pytorch [54], torchvision weights5 , and Zhang et 
al.’s implementation of LPIPS [87] at https://github.com/richzhang/ 
PerceptualSimilarity. We use the following R packages for comput-
ing and presenting our results: reticulate [72], tidyverse [81], 
ggplot2 [80], aricode [8], MatrixCorrelation [37], ggtext [82], 
and ggpubr [40]. 

2the set of extraction layers L is architecture-specific; details of L in Appendix A 
3at the channel dimension 
4i.e., “lin” in Zhang et al. [87]
5https://pytorch.org/vision/stable/models.html 

https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
https://pytorch.org/vision/stable/models.html
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Figure 2: Diagram showing how the deep-feature-based perceptual similarity metric calculates “perceptual distance”, using 
VGG16 as the DL network F . 

Table 1: Network architectures and weights 

Network Architecture Weight 

AlexNet [47] ImageNet, Stylized ImageNet, LPIPS 
VGG16 [67] ImageNet, Stylized ImageNet, LPIPS 
SqueezeNet [36] ImageNet, LPIPS 
ResNet18 [30] ImageNet 
ResNet50 [30] ImageNet, Stylized ImageNet 
EfficientNetB0 [69] ImageNet 
EfficientNetB5 [69] ImageNet 

4.1 Pre-processing 
We follow the same image pre-processing steps of Zhang et al. [87].6 

This approach differs from the standard 224× 224 × 3 resolution that 
ImageNet-1K is typically trained on. For completeness, we have 
also run the same experiments using the standard resolution with 
details provided in Appendix C. While the overall trend remains 
similar, using the standard resolution leads to slightly worse per-
formance than with a lower resolution of 64 × 64 × 3. This finding 
suggests that the lower resolution may be more suitable for our 
specific task. By choosing a smaller size, we focus on the low-level 
aspects of perceptual similarity to mitigate the effect of “differing 
respects of similarity” [52] that may be influenced by high-level 
semantics [87]. Furthermore, the lower resolution yields significant 
improvements in computational efficiency, most notably reducing 

6Namely, we convert the input stimuli into sRGB color space, resize them to 64 × 64 × 3, 
and normalize them by the same mean and standard deviation coefficients used by 
Zhang et al. [87], which are the same mean and standard deviation for ImageNet-1K 
except adjusted for inputs ranging from [-1, 1] instead of [0, 1]. 

the computing time for VGG16 from approximately three hours to 
merely 30 minutes.7 

Prior research has shown that pre-processing images by trans-
forming them into different color spaces yielded different image 
classification results [27]. We verify that all images in ImageNet-1K 
and BAPPS are in sRGB space, and we transform all input images 
into sRGB format before processing. 

5 Replicating Veras and Collins [74] 
5.1 Overview of Original Paper 
Veras and Collins [74] investigated the application of a well-
established computer vision metric, the Multi-Scale Structural Sim-
ilarity Index (MS-SSIM) [78], to assess the discriminability of a 
data visualization across a variety of datasets. In this context, dis-
criminability refers to “the average perceptual distance between 
the corresponding visualizations” for a collection of datasets [74]. 
Their research proposed using perceptual similarity metrics to eval-
uate and rank competing visual encodings based on their discrim-
inability, thereby informing visualization selection for specific data 
distributions. 

Veras and Collins first used gradient descent to optimize MS-
SSIM parameters using stimuli from a study of scatterplot simi-
larity judgments by Pandey et al. [53]. With this tuned MS-SSIM, 
they calculated pairwise distances between scatterplots and derived 
grouping labels using hierarchical clustering. To validate their ap-
proach, they compared their group labels against the consensus 

7Experiments were conducted on a Dell XPS 15 (2019) with Intel Core i7-8750H @ 
2.20GHz, 16GB RAM, NVIDIA GeForce GTX 1050 Ti with Max-Q Design, running 
Microsoft Windows 11 Pro. 
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Figure 3: Screenshot obtained from the supplementary mate-
rials of Pandey et al. [53] showing Participant 1’s final screen 
after completing the naming phase, with group descriptions 
and their corresponding easiness and confidence scores (sep-
arated by pipe characters). 

group labels from human similarity judgments in Pandey et al.’s 
original study [53]. 

5.1.1 Data, Visual Stimuli, Task. Veras and Collins [74] based 
their research on data from Pandey et al.’s study [53], which in-
vestigated the subjective perception of similarity in scatterplots. 
Pandey et al. [53] conducted a study with 18 participants from 
scientific backgrounds, asking them to group similar scatterplot 
thumbnails and provide confidence and easiness ratings for their 
groupings (see Fig. 3). The participants were asked to group a total 
of 247 scatterplots. These human-generated groupings served as a 
benchmark for Veras and Collins [74] to validate the performance 
of their tuned MS-SSIM. Data from Pandey et al. is provided at 
https://github.com/nyuvis/scatter-plot-similarity. 

5.1.2 Similarity Measure. Given that different participants might 
group the same pair of scatterplots into two different groups, Pandey 
et al. [53] calculated the consensus distance between plots 𝑖 and 𝑗 as 
follows: 

𝑑𝑖 , 𝑗 = 
1 
𝑁 

𝑁∑︁ 

𝑘 =1 

 
1 − 

𝑐𝑖, 𝑗 

min{𝑐𝑖 , 𝑐 𝑗 } 

 
𝑘 

(2) 

where 𝑁 is the number of participants, 𝑐𝑖 , 𝑗 is the number of clusters 
that contain both plots 𝑖 and 𝑗 , and 𝑐𝑖 and 𝑐 𝑗 are the number of 
clusters that contain the plots 𝑖 and 𝑗 respectively. The authors 
allowed participants to assign the same plot to multiple groups. 
These consensus distances formed a consensus perceptual distance 
matrix, which was later clustered using hierarchical clustering to 
form groupings. 

Veras and Collins [74] conceptually replicated Pandey et al.’s 
experiment [53] by using an alternative similarity measure to ap-
proximate the perceptual distance between scatterplots. They used 
the Multiscale-Structural Similarity Index (MS-SSIM) [78], an ex-
tension of the Structural Similarity Index (SSIM) [77] where the 
contrast and structural similarities are computed at 𝐾 image scales. 

For image pair 𝑋 , 𝑌 , MS-SSIM is defined as 

MS-SSIM(𝑋 , 𝑌 ) = 𝑙 (𝑥 , 𝑦)𝛼 
𝐾 

𝑖 =1 

𝑐 (𝑥𝑖 , 𝑦𝑖 )𝛽𝑖 𝑠 (𝑥𝑖 , 𝑦𝑖 )𝛾𝑖 (3) 

where 𝑙 (·) is the luminance similarity function, 𝑐 (·) is the contrast 
similarity function, and 𝑠 (·) is the structural similarity function. 
Veras and Collins set 𝛼 = 1, 𝛽𝑖 = 𝛾𝑖 = 𝑤𝑖 for 𝑖 ∈ [𝐾 ], where 
𝐾 = 5 is the number of scales. The weights 𝑤𝑖 can be interpreted 
as the relative importance of each image at scale 𝑖 in determining 
similarity. Veras and Collins [74] employed an iterative process 
to adjust the scale weights 𝑤1, 𝑤2, ..., 𝑤 5 in order to minimize the 
discrepancy between the similarity scores calculated by MS-SSIM 
and a set of empirical human judgments on scatterplots. 

5.1.3 Performance Evaluation. Veras and Collins used pairwise dis-
tances calculated by fine-tuned MS-SSIM to construct clustering 
labels for the scatterplots and compared these clustering labels 
against empirical judgments using four established cluster quality 

8measures  — adjusted mutual information (AMI), normalized mu-
tual information (NMI), Rand index (RI), and adjusted Rand index 
(ARI). Based on information theory, NMI and AMI quantify the 
shared information between two clusterings, with NMI scaling mu-
tual information to [0, 1], while AMI correcting for chance. They 
are robust to differences in cluster numbers and sizes. RI measures 
the percentage of correct decisions made by the clustering algo-
rithm, considering all possible pairs of points, while ARI adjusts RI 
for chance, providing a more reliable comparison between cluster-
ings. All measures except RI range from 0 (random clustering) to 1 
(perfect clustering relative to the ground truth). 

5.2 Implementation 
We extend Veras and Collins’ approach [74] by replacing MS-SSIM 
with deep-feature-based similarity metrics. One key difference be-
tween our approach and theirs is that while we exclusively rely on 
pre-trained ImageNet and Stylized ImageNet weights, Veras and 
Collins learned scaling weights for MS-SSIM using the scatterplots 
specific to their study. As such, their learned metric might not 
transfer well to different visualization types or domains. 

For each ML network (Table 1), we calculate 
247
2 
 
= 30, 381 

pairwise distances between all scatterplots and turn these pairwise 
distances into 247×247 distance matrices. For a baseline comparison, 
we also calculate pairwise distances using Mean Squared Error 
(MSE), a popular pixel-based metric. We then apply hierarchical 
clustering with Ward’s agglomeration strategy to compute the 
clusters for each distance matrix, using even-height tree cuts to 
yield 20 clusters — matching the number used by Pandey et al. [53]. 
To evaluate performance, we calculate clustering quality measures 
between our labels and the labels obtained by Pandey et al. [53]. 
We also compare our results to the results obtained by Veras and 
Collins [74] (represented by in Figure 4) and the baseline MSE 
results (represented by in Figure 4). 

8Cluster quality measures are traditionally used to qualify the agreement between two 
independent label assignments on the same dataset. 

https://github.com/nyuvis/scatter-plot-similarity
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5.3 Our Results 
We find that our top-performing architectures ( EfficientNet 
B0, AlexNet, and SqueezeNet) achieve comparable 
(if not superior) results to those achieved by gradient-descent-tuned 
MS-SSIM ( ), and far superior results to those achieved by MSE, 
the point-wise pixel difference metric. This outcome demonstrates 
robust performance across different CNN architectures and is par-
ticularly noteworthy as it relies purely on transfer learning with 
no training on the existing set of scatterplots. 

Figure 4: Black diamonds represent Veras and Collins’ [74] 
results using gradient-descent-tuned MS-SSIM. Crosses rep-
resent results using Mean Squared Error (MSE). Points are 
offset for clarity. 

Comparing between architectures, we find that SqueezeNet 
(LPIPS) generally outperforms all the other networks.9 Except 
for RI, the best-performing ML networks, EfficientNet B0, 

AlexNet, and SqueezeNet (LPIPS), outperform the 
gradient-descent-tuned MS-SSIM results ( ) obtained in Veras and 
Collins [74]. 

Put differently, the clustering labels using only ImageNet pre-
trained weights match human labels better than Veras and Collins’ 
approach, which used parameters optimized for these scatterplots. 
Contrary to initial expectations, we find that incorporating styl-
ized ImageNet weights does not consistently lead to performance 
improvements. For details, see the full set of clustered scatter-
plots, their labels (both from Pandey et al. [53] and from using 
SqueezeNet (LPIPS)), and the table of all clustering performance 
measures (Table 3) in Appendix D. 

5.4 Ablation Study 
To systematically analyze the factors contributing to the effective-
ness of deep-feature-based similarity metrics, we conducted a series 
of ablation studies. The studies examine (1) the relative importance 
of network architecture versus learned weights, (2) the impact of 

9 SqueezeNet (LPIPS) appear most frequently in the top-3 performing similarity 
metric backends for all clustering quality measures. 

different feature extraction layers on clustering quality, and (3) 
the role of supervised learning and dataset complexity in feature 
learning, comparing ImageNet-1K against simpler datasets. 

5.4.1 Robustness Check — Random Weights. We initialize the same 
architectures with random weights to test whether our results stem 
from ImageNet pre-trained weights and assess if the resulting dis-
tance matrices and clustering labels still match empirical judgments. 
We repeat the process ten times and calculate the mean and 95% 
non-parametric bootstrap confidence interval (CI) for each archi-
tecture (Fig. 5). 

Figure 5: Black diamonds represent Veras and Collins’ [74] 
results using gradient-descent-tuned MS-SSIM. Crosses rep-
resent results using MSE. Dots show means of 10 trials. Lines 
indicate 95% confidence intervals (CIs) from non-parametric 
bootstrap. Points and CIs are slightly offset for clarity. 

We find that when using randomly initialized weights, all net-
work architectures consistently under-perform the results of the 
same networks that use ImageNet pre-trained weights (Fig. 4). In 
fact, the performance across network architectures is clustered 
around the performance of MSE, the pixel-based metric. These 
findings suggest that the clustering performance of deep-feature-
based similarity metrics is largely attributable to weights trained 
on ImageNet. 

5.4.2 Impact of Each Feature Extraction Layer. To identify which 
feature extraction layers contributed most to the clustering quality 
measures, we analyze the “perceptual distance” extracted from 
each individual layer 𝑙 ∈ L, rather than summing across layers 
as in Equation (1). We also examine the effect of each layer by 
computing distances using all layers except layer 𝑙 ∈ L. We focus 
our analysis on the top-performing network architectures for each 
clustering quality measure. 

Our analysis shows that across all examined neural network 
backbones, performance around layers 3 or 4 reaches performance 
comparable to those reported by Veras and Collins (Fig. 6). The best 
per-layer performance is usually the last or second-to-last layer. 
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Figure 6: Clustering quality measures for AlexNet, 
AlexNet (LPIPS), EfficientNet B0, SqueezeNet, and 

SqueezeNet (LPIPS) calculated using perceptual distance 
at each layer 𝑙 ∈ L. Dashed lines (- - -) represent Veras and 
Collins’ results using gradient-descent-tuned MS-SSIM. 
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Figure 7: Clustering quality measures for AlexNet, 
AlexNet (LPIPS), EfficientNet B0, SqueezeNet, and 
SqueezeNet (LPIPS) calculated using all layers except layer 
𝑙 ∈ L. Dashed lines (- - -) represent Veras and Collins’ results 
using gradient-descent-tuned MS-SSIM. 

From Figure 7, the performance appears relatively stable, with 
no specific layer significantly decreasing or increasing performance. 
The LPIPS version of AlexNet and SqueezeNet (i.e., ImageNet 
pre-trained weights + linear calibration, AlexNet (L) and 
SqueezeNet (L)) in general does not improve performance on 

top of the existing performance of AlexNet and SqueezeNet. 
These findings suggest that: (1) the linear calibration added by 
LPIPS provides limited value for scatterplot similarity; (2) while no 
single layer appears to dominate performance, excluding the first 
layer slightly improves performance; and (3) using only the last 
layer might be sufficient and could offer computational efficiency 
gains. These results align with prior observations [16, 21] and show 
that later layers encode shape and structure information that better 
matches human similarity judgments. 

5.4.3 Impact of Training Objective and Training Dataset. We com-
pared models pre-trained using different frameworks: supervised 
learning (ImageNet-1K and CIFAR-10 [46]) and self-supervised 
learning (SimCLR on STL-10 [11]). Pre-trained weights were 
sourced from established repositories (see Appendix B). 

Figure 8 reveals a clear performance hierarchy: ImageNet-trained 
models performed best across all clustering metrics ( ResNet50 
slightly outperforming ResNet18), followed by CIFAR10-
trained models, while SimCLR achieved similar results to CIFAR-
10 but underperformed compared to ImageNet. This gap could 
be due to differences in both the learning framework and dataset 
(STL-10 vs. ImageNet-1K). 

Figure 8: Resnet18 and ResNet50 performance. Black 
diamonds represent Veras and Collins’ [74] results using 
gradient-descent-tuned MS-SSIM. Crosses represent results 
using MSE. Points are dodged for clarity. 

We also observe an interesting pattern where ResNet50 trained 
on CIFAR10 performs similarly to the MSE baseline. This poor per-
formance likely stems from the mismatch between ResNet50’s 
deep architecture — designed for complex, ImageNet-like datasets — 
and CIFAR10’s low-resolution (32 × 32) images. With limited input 
complexity propagating through 50 layers, the network might de-
fault to learning shallow, pixel-level features rather than developing 
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rich semantic representations. This demonstrates how dataset com-
plexity and the learning framework impact representation quality 
and, in turn, downstream performance. 

5.5 Discussion of Veras and Collins 
Our replication of Veras and Collins’ study [74] yields compelling 
results: without any training or fine-tuning on the stimuli, the 
best-performing deep-feature-based similarity metrics outperform 
gradient-descent-tuned MS-SSIM, a traditional computer vision 
metric, on three out of four clustering quality measures by an av-
erage of 14.04% in aligning clustering labels to human labels of 
scatterplot. This is particularly noteworthy given that MS-SSIM’s 
performance was specifically tuned on the scatterplots, while our 
deep learning models relied solely on pre-trained ImageNet weights. 
The ablation studies (Section 5.4) suggest that (1) perceptual losses 
extracted at later stages are generally better (Fig. 6) and (2) high-
quality visual representations require both an appropriate learning 
framework and a sufficiently rich training dataset. The lower per-
formance of CIFAR10-trained models (Section 5.4.3), despite using 
supervised learning, emphasizes that dataset characteristics (res-
olution, class diversity, sample complexity) may be as important 
as the choice of learning framework. These results provide evi-
dence for effective transfer learning from large-scale natural image 
datasets to data visualizations that utilize spatial encodings, sug-
gesting that the features learned by neural networks on datasets 
such as ImageNet-1K may capture some fundamental aspects of 
visual perception that extend beyond the domain of natural images. 

6 Replicating Demiralp et al. [13] 
6.1 Overview of Original Paper 

Figure 9: Palettes that maximize perceptual discriminability 
for color, shape, and size generated by Demiralp et al. [13], 
using the perceptual kernels from the triplet matching task. 

Demiralp et al. [13] introduced the concept of perceptual kernels, 
which are distance matrices derived from aggregate perceptual 
judgments. Perceptual kernels encode perceptual differences in a 
reusable form that is directly applicable to visualization evaluation 
and automated design. For example, one can construct palettes that 
maximize perceptual discriminability, as shown in Figure 9. 

The authors conducted two sets of crowd-sourced experiments, 
one to estimate the perceptual kernels for color, shape, and size, and 
one to estimate perceptual kernels for the pairwise combinations 
(i.e., color-shape, color-size, shape-size). Each experiment used five 
different judgment types. They found that the triplet matching task, 
the task that asks participants to select between a pair of options 

that is most similar to the reference image, exhibits the least inter-
subject variance, produces results that are less sensitive to subject 
count, and enables the most accurate prediction of bivariate kernels 
from univariate inputs [13]. 

6.1.1 Data and Visual Stimuli. In their first experiment, Demiralp 
et al. [13] used the default color and shape palettes from Tableau, 
each of which contained ten distinct values. For size, they used a 
palette consisting of ten circles with linearly increasing area. In the 
second experiment, Demiralp et al. [13] selected four values from 
each palette and performed a cross product, resulting in 4 × 4 = 16 
distinct values for each pairwise combination of color, shape, and 
size. Their source code, experiment interface, and data are at https: 
//github.com/uwdata/perceptual-kernels. 

6.1.2 Tasks. Demiralp et al. elicited similarity judgments using 
five different tasks: 

(1) 
Pairwise rating on a 5-point 
scale (L5) presents participants 
with a pair of stimuli and asks 
them to rate the similarity be-

tween these two stimuli on a 5-point Likert scale.10 

(2) 
Pairwise rating on a 9-point 
scale (L9) presents participants 
with a pair of stimuli and asks 
them to rate the similarity be-

tween these two stimuli on a 9-point Likert scale.11 

(3) 
Tm: More similar to ref? 

a ref b 

Triplet ranking with matching 
(Tm) presents participants with 
three stimuli, one of which is the 
reference, and asks participants to 

select among the two remaining options which one is most 
similar to the reference. 

(4) 
Td: Which one looks 
the most different? 

a b c 

Triplet ranking with discrimi-
nation (Td) asks participants to se-
lect the odd stimuli out of a triplet 
of stimuli. This task is otherwise 

known as the odd-one-out task. 
(5) 

Spatial arrangement (Sa) 
presents participants with all 
stimuli and asks them to arrange 
them on a 2D plane. 

A total of 6 visual variables × 5 judgment types = 30 jobs were 
run on Amazon Mechanical Turk, with each job completed by 20 
Turkers for 600 distinct subjects [13]. 

6.2 Implementation 
We replicate parts of Demiralp et al.’s [13] experiments using deep-
feature-based similarity metrics (Table 1) to generate 10 × 10 and 

10These are actually 6-point Likert items (including 0), but we follow the naming 
scheme from the original work. 
11Likewise, these are 10-point Likert items (including 0). 

https://github.com/uwdata/perceptual-kernels
https://github.com/uwdata/perceptual-kernels
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16 × 16 distance matrices. For a baseline comparison, we also cal-
culate pairwise distances using Mean Squared Error (MSE), a pop-
ular pixel-based metric. Because LAB color space is “perceptually 
uniform” [9], meaning numerical distances between colors match 
human perception of those differences, we compute MSE in LAB 
rather than sRGB space for visual channels that involve color. Fol-
lowing Demiralp et al.’s approach, we normalize each matrix to 
span the range [0, 1]. 

6.2.1 Data and Visual Stimuli. Demiralp et al.’s experiments used 
stimuli of size 36 × 36, which is too small for certain deep-feature-
based similarity metrics to operate on. Since these stimuli consist 
of elementary visual channels (single colors, shapes, and sizes) 
rather than complex data visualizations, we do not expect human 
perceptual judgments to be affected by increasing the stimulus size. 
Therefore, we generated 10 (16 for size-color) PNG images in RGB 
color space of size 224 × 224 × 3 for each visual channel. 

6.2.2 Performance Evaluation. Demiralp et al. [13] compared the 
degree of compatibility between the five judgment tasks by cal-
culating Spearman’s rank correlation coefficient on pairwise 
distances for the same visual channel. Spearman’s rank correlation 
coefficient, otherwise known as Spearman’s 𝜌 , is defined as the 
Pearson correlation coefficient between the variables’ ranks and 
assesses how well the relationship between two variables can be 
described using a monotonic function. Spearman correlation ranges 
between −1 and 1, with 1 indicating perfect rank correlation and −1 
indicating perfectly opposite ranks. This metric has also been used 
to evaluate the performance of computer vision similarity metrics, 
such as DISTS [16], on Image Quality Assessment datasets. 

6.3 Results 
For each of the four visual channels — color, size, shape, and size-
color — we analyze the best-performing DL network.12 For com-
parison, we show the perceptual kernel most correlated with the 
distance matrix of the best-performing DL network.13 

6.3.1 Color. AlexNet (LPIPS) outperforms other DL networks. 
Distance matrices from deep-feature-based similarity metrics show 
the highest rank correlation with the perceptual kernel from Td 
and the lowest with Sa (Fig. 10 top). 

AlexNet (LPIPS) demonstrates good overall performance in 
measuring relative color distances, but fails to replicate certain 
human perceptual patterns. For example, humans judge yellow to 
be more similar to green than teal, but AlexNet (LPIPS) “sees” 
yellow and teal as about equidistant from green. 

The baseline MSE performances demonstrate the highest rank 
correlation with Sa, which makes sense given that MSE, a pixel-
level metric, is directly measuring color differences in a perceptually 
uniform color space. This also suggests that Sa might be a better 
task to capture the non-linear aspects of human color perception. 
None of the pre-trained networks outperform the MSE baseline in 
Sa. 

12 ... which is the one that achieves the highest average Spearman rank correlation 
coefficient when compared to Demiralp et al.’s perceptual kernels across their five 
judgment tasks. 
13The complete set of distance matrices is available in the supplementary material. 

Figure 10: (a) Spearman’s rank correlation between distance 
matrices and Demiralp et al.’s [13] perceptual kernels (dashed: 
MSE-based distance matrices), (b) AlexNet (LPIPS) distance 
matrix, (c) Demiralp et al.’s Td perceptual kernel. 

6.3.2 Size. AlexNet (LPIPS) outperforms other DL networks. 
Distance matrices from deep-feature-based similarity metrics and 
MSE show the highest rank correlation with the perceptual kernel 
from Sa and lowest with Td (Fig. 11 (a)). 

Figure 11: (a) Spearman’s rank correlation between distance 
matrices and Demiralp et al.’s [13] perceptual kernels (dashed: 
MSE-based distance matrices), (b) AlexNet (LPIPS) distance 
matrix, (c) Demiralp et al.’s Sa perceptual kernel. 
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Most DL networks achieve almost perfect rank correlation with 
Sa (Fig. 11 (a)) while MSE achieves around 0.7, suggesting these 
metrics capture more fundamental aspects of human size perception 
than pixel-level differences. 

6.3.3 Shape. VGG16 (LPIPS) outperforms other DL networks. Dis-
tance matrices from deep-feature-based similarity metrics show 
the highest rank correlation with the perceptual kernel from Tm 
and lowest with Sa (Fig. 12 (a)). Stylized ImageNet weights weakly 
improve the correlation for VGG16 and ResNet50 but not AlexNet. 

Figure 12: (a) Spearman’s rank correlation between distance 
matrices and Demiralp et al.’s [13] perceptual kernels (dashed: 
MSE-based distance matrices), (b) VGG16 (LPIPS) distance 
matrix, (c) Demiralp et al.’s Tm perceptual kernel. 

All MSE performances show a negative correlation, with Sa hav-
ing the most negative correlation. Compared to MSE performances, 
the modest positive associations from CNNs show they are learning 
something, but there’s still a large gap in capturing human shape 
perception. Specifically, all correlation coefficients are weak (i.e., 
∈ [−0.25, 0.5]) compared to prior results for color (Section 6.3.1 
Fig. 10) and size (Section 6.3.2 Fig. 11), where excluding Sa, rank 
correlations are around 0.75. Examining the distance matrix and 
perceptual kernel closely (Fig. 12 (b), (c)) reveals that, unlike hu-
mans, deep-feature-based perceptual similarity metrics do not view 
similarity as rotation-invariant. In other words, while humans 
may judge and , and to be similar, as they are rotated 
variants of each other, VGG16 (LPIPS), the best-performing DL 

network, “sees” them as different. We speculate why this is the case 
in Section 6.5. 

6.3.4 Size-Color. AlexNet outperforms other DL networks. Dis-
tance matrices from deep-feature-based similarity metrics show the 
highest rank correlation with the perceptual kernel from Tm and 
the lowest with Sa (Fig. 13 (a)). 

Figure 13: (a) Spearman’s rank correlation between distance 
matrices and Demiralp et al.’s [13] perceptual kernels (dashed: 
MSE-based distance matrices), (b) Demiralp et al.’s Tm per-
ceptual kernel, (c) AlexNet distance matrix, (d) Demiralp et 
al.’s Sa perceptual kernel. 

Interestingly, perceptual distances obtained via Sa (Fig. 13 (d)) 
demonstrate a clear hierarchy — circles are most similar to those 
sharing the same color, followed by those with similar sizes, and 
then those with related colors (i.e., blue to teal, red to orange). 
In contrast, similarity judgments elicited through Tm (Fig. 13 (b)) 
reveal more localized similarity clusters, possibly due to the ab-
sence of context and its implied constraints when using Tm to elicit 
similarity judgments. This suggests a potential need to reconsider 
Demiralp et al.’s advice to favor triplet matching (Tm) judgments 
[13], especially when collecting visual variables that encode multi-
ple visual channels simultaneously. 

This hierarchy of “color before size” is not captured by either 
MSE or deep-feature-based similarity metrics (Fig. 13 (c)), and us-
ing ImageNet pre-trained weights in general does not improve 
correlation much against simple pixel-based MSE baseline. 

6.4 Robustness Check — Random Weights 
Similar to Section 5.4.1, we initialize the same architectures with 
random weights to determine to what extent ImageNet pre-trained 
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weights can explain our results. We repeat the process of calculating 
distance matrices and Spearman’s rank correlation coefficients with 
perceptual kernels ten times and present the 95% non-parametric 
bootstrap CIs for Spearman’s rank correlation coefficient. For each 
visual channel, we focus on the best-performing DL architecture 
and present the average distance matrix14 that achieves the highest 
average Spearman correlation coefficient across all repetitions and 
all five judgment tasks. For direct comparison, we also present the 
perceptual kernel with which the average distance matrix has the 
highest Spearman correlation. 

6.4.1 Color. Correlation results with random weights (Fig. 14 (a)) 
are only slightly worse than those with ImageNet pre-trained 
weights (Fig. 10 (a)) in Section 6.3.1, suggesting that existing deep-
feature-based similarity metrics may not effectively capture the 
perception of color similarity. 

Figure 14: (a) Spearman’s rank correlations between random-
weight architectures’ distance matrices and perceptual ker-
nels (95% bootstrap CI; dashed: MSE-based distance matrices), 
(b) Random AlexNet’s average distance matrix, (c) Demiralp 
et al.’s Tm perceptual kernel. 

6.4.2 Size. The correlation results for size (Fig. 15 (a)), except for 
AlexNet and SqueezeNet, are now around 75%, compared to per-
fect rank correlations for almost all networks (Fig. 11 (a)). 

This suggests that deep-feature-based similarity metrics are 
learning something about size, but it is unclear to what extent this is 
14All distance matrices can be found in the supplementary material. 

Figure 15: (a) Spearman’s rank correlations between random-
weight architectures’ distance matrices and perceptual ker-
nels (95% bootstrap CI; dashed: MSE-based distance matrices), 
(b) Random AlexNet’s average distance matrix, (c) Demiralp 
et al.’s Sa perceptual kernel. 

attributable to ImageNet pre-trained weights or the functional form 
of deep-feature-based similarity metrics (Eq. (1)) that relies on tak-
ing Euclidean differences between deep feature activations across 
spatial locations. For all tasks except Sa, using randomly initialized 
weights result in about similar rank correlation performance as 
using MSE (except for AlexNet and SqueezeNet). 

6.4.3 Shape. Across all DL architectures, the performance is 
weakly negatively correlated to all perceptual kernels obtained 
via different tasks (Fig. 16 (a)) and is worse than the previous corre-
lation results (Fig. 12 (a)) in Section 6.3.3. 

The performance when using randomly initialized weights is 
very similar to that of using MSE. Given the existing functional form 
of deep-feature-based similarity metrics (Eq. (1)) and its reliance 
on taking Euclidean differences between deep feature activations 
spatially, this result suggests that some transfer learning is hap-
pening in Figure 11, but not to the degree that it captures what 
humans perceive as shape similarity. We also suspect that glyph 
shape similarity judgments are not entirely perceptual but may 
also depend on context/concept — consider this triplet difference 
example: (×, □, ⃝ ). One could choose ⃝ as the odd one out, since 
the other shapes have angles and circles do not have angles; or 
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Figure 16: (a) Spearman’s rank correlations between random-
weight architectures’ distance matrices and perceptual ker-
nels (95% bootstrap CI; dashed: MSE-based distance matrices), 
(b) Random AlexNet’s average distance matrix, (c) Demiralp 
et al.’s Td perceptual kernel. 

choose × as the odd one out, since both □ and ⃝ can be drawn on 
a page without lifting the pen off the page. 

6.4.4 Size-color. Again, we observe similar trends — the rank cor-
relation results (Fig. 17 (a)) are slightly worse compared to the rank 
correlation results (Fig. 13 (a)) in Section 6.3.4 when using Ima-
geNet pre-trained weights. For all tasks, using randomly initialized 
weights result in rank correlations about the same as MSE. 

Across the examined visual channels, the best-performing archi-
tecture, when using randomly initialized weight, is always AlexNet. 
We suspect that the simpler and shallower architecture and the 
larger filter size in the earlier layers (11 × 11, 5 × 5 instead of 3 × 3) 
of AlexNet might “preserve” more of the raw visual information, 
which explains its close to 0.5 rank correlation with Sa for visual 
channels related to spatial information (size and size-color). 

6.5 Discussion of Demiralp et al. 
Although deep-feature-based similarity metrics achieve positive 
(Figs. 10 and 13), if not perfect (Fig. 11), rank correlation for several 
visual variables, the comparison against baseline MSE performances 
and robustness check (Section 6.4) reveals that it is unclear whether 

Figure 17: (a) Spearman’s rank correlations between random-
weight architectures’ distance matrices and perceptual ker-
nels (95% bootstrap CI; dashed: MSE-based distance matrices), 
(b) Radom AlexNet’s average distance matrix, (c) Demiralp et 
al.’s Tm perceptual kernel. 

such performance can be entirely attributed to pre-trained Ima-
geNet or Stylized ImageNet weights. 

We suspect the decent correlation in the robustness check stems 
from both the functional form of deep-feature-based similarity 
metrics (Eq. (1)) and Demiralp et al.’s [13] choice of visual stimuli. 
Deep-feature-based similarity metrics, as we implemented, calcu-
late Euclidean differences between deep feature activations, and for 
simple visual stimuli without complex patterns or textures, the fea-
ture map difference primarily reflects how well the stimuli spatially 
align/structurally correspond. For example, with rotated shape stim-
uli ( and ), the feature map differences remain almost identical 
whether using pre-trained ImageNet or random weights, given the 
same DL architecture. 

Across all five similarity judgment tasks (L5, L9, Sa, Td, and Tm), 
Sa shows the least correlation with deep-feature-based similarity 
metrics for all visual channels except size, and has the least average 
rank correlation with all other perceptual kernels of the same vi-
sual channel (Demiralp et al. [13]). We suspect this occurs because 
participants see the most visual stimuli simultaneously (all 10/16 of 
them), and therefore face more global, hierarchical constraints when 
judging their similarities. In contrast, pairwise rating tasks (L5, L9) 
and triplet judgment tasks (Td, Tm) only require focusing on the 
local relationships between 2–3 stimuli at a time. This provides 
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one way to explain the Sa perceptual kernel for size-color (Fig. 13), 
where participants judge similarity first by color, then by size within 
each same-color group. 

Our replication of Demiralp et al. [13]’s experiment demonstrates 
that deep-feature-based similarity metrics currently do not approxi-
mate the perceptual distance between visual encodings such as color 
and shape. Specifically, these metrics are not rotation-invariant (Sec-
tion 6.3.3) and do not capture the precedence effect of certain visual 
channels over others in similarity judgments (Section 6.3.4). Finally, 
while we explored using Stylized ImageNet weights, we cannot 
conclude definitively whether this approach improves performance, 
suggesting the need for further research. 

7 General Discussion 

7.1 Key Findings 
(1) Effectiveness for complex visualizations: Our replica-

tion of Veras and Collins’ study [74] demonstrates that deep-
feature-based similarity metrics can outperform traditional 
computer vision metrics (e.g., MS-SSIM) in aligning with 
human clustering judgments of scatterplot similarity. We 
highlight the fact that MS-SSIM parameters are optimized on 
the domain data (i.e., scatterplots) while deep-feature-based 
similarity metrics only rely on weights trained on natural im-
ages and are therefore completely domain-free. This implies 
that transfer learning from natural image domains to visual-
izations is feasible and that ImageNet pre-trained weights 
capture fundamental visual features that generalize across 
diverse visual domains. This could be good in practice by sig-
nificantly reducing the effort required to develop and train 
models from scratch for each new set of domain-specific 
visualizations. 

(2) Limitations for abstract visual encodings: In replicating 
Demiralp et al.’s work [13], we find that deep-feature-based 
metrics struggle to capture human perceptual similarities for 
basic visual channels like color and glyph shape, but perform 
well when assessing size. We hypothesize that part of the rea-
son for this poor performance is because judgments of color 
and glyph shape similarity are not purely perceptual, that is, 
they also rely on high-level semantics and/or concepts. For 
example, different cultural associations with color hues [38] 
may lead people to judge the similarity of color between the 
same triplet differently. In terms of context/concept, see the 
example in Section 6.4.3. We also observe that when partic-
ipants use spatial arrangement to judge visual stimuli that 
encode multiple channels (e.g., Fig. 13 in Section 6.3.4), they 
tend to judge color similarity before size similarity. 

(3) Architecture and weight sensitivity: Our results show 
that the performance of deep-feature-based metrics does 
not vary significantly across different neural network archi-
tectures (Fig. 4) but does vary across different pre-trained 
weights of varying complexity (e.g., CIFAR10 vs ImageNet-
1K in Figure 8). The impact of stylizing ImageNet is less 
clear. 

In summary, our findings suggest a potential for deep-feature-
based similarity metrics in tasks involving visualizations that ex-
hibit texture or pattern-like features (e.g., scatterplots) and highlight 

a need for caution when applying these metrics to primitive visual-
ization glyphs or elements. 

7.2 Limitations and Future work 
While deep-feature-based similarity metrics offer a promising so-
lution for approximating similarity perception in information vi-
sualization, future work should explore the generalizability of 
deep-feature-based similarity metrics, focusing on: 

(1) Perceptual vs. conceptual similarity: Our current ap-
proach focuses on low-level perceptual similarity and does 
not account for higher-level conceptual or semantic similari-
ties [53] that may be important in visualization interpreta-
tion. 

(2) Visualizations are multi-modal and relational: Our 
study primarily focuses on static, visual elements. An inter-
esting direction for future work is to investigate how these 
metrics can be extended to handle different types of visualiza-
tions and their encoded visual relations [19, 29, 42], diverse 
user groups, or multimodal visualizations that incorporate 
text, interactivity, or other non-visual elements. 

(3) Benchmark development: Deep-feature-based similarity 
metrics vary widely in their architectures [49, 87], train-
ing/tuning datasets [16], feature extraction layers [55], and 
evaluation approaches [68]. Comprehensive benchmarks are 
needed to standardize the evaluation and comparison of 
these metrics across domains. 

(4) Explore more DL architectures, learning frameworks, 
and training datasets: While this work explores five archi-
tectures (trained for image classification), future work can 
investigate Vision Transformers (ViT) [73], alternative learn-
ing frameworks (e.g., self-supervised learning), and low-bit 
quantization. However, adapting ViT presents a fundamen-
tal challenge because the Transformer architecture relies on 
fixed-size sequences of patches and positional encodings. 
For example, the ViT-B/16 model processes 224 × 224 im-
ages into 196 patches (14 × 14), while our 64 × 64 resolution 
yields only 16 patches (4 × 4). This significant mismatch in 
sequence lengths makes it impractical to transfer pre-trained 
ViT weights to our deep-feature-based similarity metric with-
out developing novel positional encoding mappings — an 
algorithmic challenge beyond this paper’s scope. 

(5) Replication scope and inherited design choices: By repli-
cating prior studies, our work inherits their insights and 
methodological constraints in comparing human and ma-
chine behavior. While we show deep-feature-based metrics 
can fit into existing frameworks (as shown in Figure 1), we 
are limited by these studies’ choices in stimulus presenta-
tion, task design, and inference procedures. Future research 
should validate these metrics through new experimental 
designs that systematically vary how human similarity judg-
ments are elicited, representations are inferred, and human-
machine behaviors are compared. 
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7.3 Similarity, Constraints, and Inferred 
Representations 

Examining perceptual kernels from size-color (Section 6.3.4) re-
veals that different similarity judgment tasks likely impose different 
constraints on participants. These different constraints are then 
encoded in different outcome variables and translated into different 
inferred representations. Beyond traditional tasks such as triplet 
matching and triplet difference, there are also quadruplet match-
ing [25], octet matching [63], and the lineup task [4]. Beyond the 
contextual constraints imposed by different similarity judgment 
tasks, human cognitive limitations also play a crucial role — just as 
Hosseinpour et al. [33] demonstrated that increasing the number 
of frames in a small multiples visualization leads to a linear decline 
in accuracy, the complexity of similarity judgments may also tax 
our limited cognitive processing capacity. 

Moreover, different visualization tasks may require different 
similarity models. Existing research has predominantly modeled 
similarity via a geometric model [70]. Such models assume minimal-
ity, symmetry, and triangle inequality. However, violations of all 
these assumptions have been empirically observed [71]. Further 
research is needed to understand how different judgment tasks 
affect behavioral outcomes, how task constraints influence repre-
sentation inference, and how different similarity models perform 
across visualization contexts. 

7.4 Potential Applications and Broader 
Implications 

While not yet a replacement for human testing, these metrics show 
promise for both pre- and post-experimental applications. For in-
stance, they could help researchers narrow visualization design 
spaces before human studies by providing initial estimates of re-
gions likely to be perceived as similar or dissimilar. They could also 
enable systematic comparison and evaluation of designs, such as 
complementing qualitative findings from human studies by quanti-
fying how similar human-recreated charts are against the original 
charts they were shown [58]. 

This work contributes to the broader discussion about the role 
of computational models in understanding and automating aspects 
of visualization design and evaluation [14]. While our results show 
promise, they also highlight the complexity of human visual per-
ception and the challenges in creating truly generalizable models. 
As the field progresses, interdisciplinary collaboration between vi-
sualization researchers, cognitive scientists, and machine learning 
experts will be crucial to developing more perceptually aligned 
computational models for visualization analysis and design. 

8 Conclusion 
In this paper, we explore the application of deep-feature-based sim-
ilarity metrics to the domain of information visualization. Through 
two replication studies, we investigate how these metrics compare 
to traditional similarity measures and human judgments across 
scatterplots and different visual encodings. Our work demonstrates 
that deep features trained on diverse, large-scale natural image 
datasets (e.g., ImageNet-1K) transfer remarkably well to analyzing 
data visualizations like scatterplots, where spatial distributions are 
key. However, we observe limitations when applying these features 

to abstract visual primitives like glyph shapes or colors. This sug-
gests that while deep features effectively capture the spatial and 
structural aspects of visualizations that encode data, they may be 
less suited for analyzing fundamental visual elements in isolation. 
These findings help delineate where deep perceptual metrics are 
most applicable in visualization analysis and design. By demon-
strating both the potential and limitations of deep-feature-based 
similarity metrics, we contribute to the growing body of research at 
the intersection of machine learning and information visualization 
[84] and provide valuable insights for researchers and practitioners 
seeking to develop more sophisticated deep-learning-based tools 
for visualization analysis and design. 
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A Neural Network Architecture and Extraction Points 
We followed the implementation of Zhang et al. [87] when extracting deep features from AlexNet, SqueezeNet, and VGG16. We followed the 
implementation of Kumar et al. [49] when extracting deep features from ResNets and EfficientNets. See Table 2 for details. Other works, 
such as Pihlgren et al. [55], have extracted four points for each network such that the chosen points represent “early, semi-early, middle, and 
late” layers in the convolutional layers. While Pihlgren et al.’s approach offers a more systematic way to sample features across network 
depth, we opted to align our extraction points with Zhang et al. [87] and Kumar et al. [49] to enable direct comparisons, though it’s worth 
noting that there is no broad consensus in the field regarding optimal feature extraction locations. 

Table 2: Network architecture, feature extraction points, ImageNet top-1 accuracy, and model size 

Network architecture Feature extraction points Top-1 accuracy (%) Model size (MB) Num of Parameters 

AlexNet 1st, 2nd, 3rd, 4th, and 5th ReLU 56.522 233.1 61, 100, 840 
VGG16 2nd, 4th, 7th, 10th, and 13th ReLU 71.592 527.8 138, 357, 544 

SqueezeNet 
1st ReLU, 
2nd, 4th, 5th, 6th, 7th, and 8th Fire 58.178 4.7 1, 235, 496

ResNet18, 
ResNet50 

1st Conv2d, 1st MaxPool2d, 
2nd, 3rd, and 4th Block Stack 

69.758 
76.13 

44.7 
97.8 

11, 689, 512 
25, 557, 032 

EfficientNet B0, 
EfficientNet B5 

1st Conv2d, 
2nd, 3rd, 4th, and 6th MBConv 
(mobile inverted bottleneck) 

77.692 
83.444 

20.5 
116.9 

5, 288, 548
30, 389, 784 

B Neural Network Weights 
We obtained Stylized ImageNet weights from Geirhos et al. [23]. Stylized ImageNet is generated by AdaIn style transfer [34] and the 
code is available at https://github.com/rgeirhos/Stylized-ImageNet. We utilize the Stylized ImageNet weights for AlexNet, VGG16, and 
ResNet50 trained by Geirhos et al. [23] at https://github.com/rgeirhos/texture-vs-shape/. For ResNet-50, Geirhos et al. [23] used the 
standard ResNet-50 architecture from PyTorch [54] (i.e., the torchvision.models.resnet50 implementation). Geirhos et al. [23] used 
batch size of 256 and trained on Stylized ImageNet for 60 epochs with Stochastic Gradient Descent (torch.optim.SGD) using a momentum 
term of 0.5, weight decay 1e-4 and a learning rate of 0.1 which was multiplied by a factor of 0.1 after 20 and 40 epochs of training. For 
AlexNet and VGG16, they used model architectures from torchvision.models and trained the networks under the identical circumstances 
as ResNet-50. Identical hyperparameter setting except for the learning rate — the learning rate for AlexNet was set to 0.001 and for VGG16 
was 0.01 initially. Both learning rates were multiplied by 0.1 after 20 and 40 epochs of training (60 epochs in total). 

We obtained CIFAR-10 weights [46] trained for ResNet18 and ResNet50 from https://github.com/huyvnphan/PyTorch_CIFAR10. We 
obtained the SimCLR weights [7] trained for ResNet18 and ResNet50 from https://github.com/sthalles/SimCLR. We use the same feature 
extraction points as specified in Table 2. 

C Pre-processing with Resolution 224 × 224 
Similar to prior observations [49], we also found that using standard ImageNet resolution (224 × 224) yields slightly worse performance 
compared to a resolution of 64 × 64. 

D Clustering of Scatterplots 

https://github.com/rgeirhos/Stylized-ImageNet
https://github.com/rgeirhos/texture-vs-shape/
https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/sthalles/SimCLR
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Figure 18: Black diamonds represent Veras and Collins’ [74] results using gradient-descent-tuned MS-SSIM. Points are slightly 
offset for clarity. Results when replicating Pandey et al’s experiment using resolution 224 × 224 × 3. 

Table 3: Clustering quality measures obtained from 64 × 64, highlighting the top three performing backbones for each measure. 

Backbone RI ARI AMI NMI 

Veras and Collins 0.90 0.20 0.35 0.51 
Mean Squared Error 0.409 0.010 0.0579 0.178 

AlexNet 0.8878905 0.2378972 0.4078301 0.5328779 
AlexNet (Stylized ImageNet) 0.8517824 0.1814445 0.3521323 0.4876277 
AlexNet (LPIPS) 0.8935190 0.2419678 0.3943937 0.5241815 

VGG16 0.8688325 0.1978015 0.3345852 0.4622434 
VGG16 (Stylized ImageNet) 0.8759751 0.2099710 0.3494193 0.4757726 
VGG16 (LPIPS) 0.8363122 0.1822110 0.3643023 0.4839279 

SqueezeNet 0.8917086 0.2286150 0.3841792 0.5179834 
SqueezeNet (LPIPS) 0.8939469 0.2433410 0.4053757 0.5353521 

EfficientNet B0 0.8833152 0.2424203 0.4153032 0.5400465 
EfficientNet B5 0.8613278 0.1856533 0.3402646 0.4677815 

ResNet 18 0.8375959 0.1617837 0.3518211 0.4793912 
ResNet 50 0.8516507 0.1918074 0.3637146 0.4907449 
ResNet 50 (Stylized ImageNet) 0.8531648 0.2176265 0.3707914 0.4893624 
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Figure 19: Consensus clustering of scatterplots from Pandey et al. [53]. 

Figure 20: Clustering labels of scatterplots from Pandey et al. [53] using SqueezeNet (LPIPS) as the backbone network for the 
deep-feature-based similarity metric. 
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