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Abstract 
Decision-making with information displays is a key focus of re-
search in areas like human-AI collaboration and data visualization. 
However, what constitutes a decision problem, and what is re-
quired for an experiment to conclude that decisions are flawed, 
remain imprecise. We present a widely applicable definition of a 
decision problem synthesized from statistical decision theory and 
information economics. We claim that to attribute loss in human 
performance to bias, an experiment must provide the information 
that a rational agent would need to identify the normative decision. 
We evaluate whether recent empirical research on AI-assisted deci-
sions achieves this standard. We find that only 10 (26%) of 39 studies 
that claim to identify biased behavior presented participants with 
sufficient information to make this claim in at least one treatment 
condition. We motivate the value of studying well-defined decision 
problems by describing a characterization of performance losses 
they allow to be conceived. 

CCS Concepts 
• Human-centered computing → Laboratory experiments; 
HCI theory, concepts and models. 
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1 Introduction 
Identifying effective information displays to support data-driven in-
ference and decision-making is a common goal across a number of 
domains, including research related to human-computer interaction 
(HCI). For example, visualization researchers emphasize assisting 
decision-making as a vital goal of data visualization [13]. Similarly, 
in human-centered artificial intelligence (AI), a growing body of 
empirical studies on human decision behavior has been called “nec-
essary to evaluate the effectiveness of AI technologies in assisting 
decision making, but also to form a foundational understanding 
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of how people interact with AI to make decisions” [28]. Human 
decisions from predictions and other information displays are often 
evaluated in studies with the goal of identifying forms of bias: ways 
in which study participants’ behavior deviates from expectations 
of good decision-making. However, within HCI and related fields 
there is little consensus on what a decision is, and how decisions 
are a distinct form of human behavior compared to other tasks. 

For example, colloquial definitions describe a decision task as 
a choice between alternatives, or a choice where the stakes are 
high (such as deciding which of multiple hurricane forecasts is 
more accurate [34], or whether to screen child welfare cases [43]). 
Neither isolates a clear set of assumptions that must hold for a 
judgment to qualify as a decision. Other accounts cast decision-
making as a higher-level task akin to sensemaking [13]. For some, 
the point of studying human decisions is to compare them to a 
definition of idealized behavior. Sometimes researchers define this 
standard in a way that is common across studies (e.g., a better 
forecast comes closer to the true probability of the event [15, 17]). 
Other times, however, different definitions of the same concept 
are used: e.g., appropriate reliance as agreeing with an AI when 
it is correct and disagreeing when it’s not [4, 6], versus providing 
a higher subjective rating of trust when the model is correct [7], 
versus choosing the better of the human versus the AI prediction 
to bet on for a future task [12]. Sometimes the point is to study 
seemingly “subjective decisions,” like how people react to music 
recommendations [26], or decide whether a house seems to match 
its valuation [35], where it can seem unclear whether normative 
interpretations of task performance can be applied. 

Not only is a more coherent definition of decision needed, as 
recent survey papers recommend [13, 27], but such a definition must 
clearly define requirements for evaluating decisions by identifying 
forms of bias or performance loss in human decision-making. In 
particular, we are concerned with the minimum requirements for 
a controlled study of human behavior to support claims that the 
human decision-making is flawed or non-ideal in some way. While it 
is generally recognized that such evaluative studies require ground 
truth outcomes to be identifiable for decision instances provided 
to participants, methodological work on experimental design in 
HCI and beyond lacks much formal guidance on what constitutes 
a valid research design for drawing normative conclusions about 
human decisions. 

This paper contributes a definition of a decision problem and 
associated guidelines for experiment design that apply to any study 
intended to evaluate human decision-making under the provision 
of information. We show how a widely applicable framework for 
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studying decision-making can be synthesized from several bodies 
of work outside HCI. First, foundations of statistical decision theory 
and expected utility theory [38–40] rigorously define what it means 
to make good decisions under uncertainty. Second, information eco-
nomics formalizes information structures that capture the relevant 
information in a set of signals for a decision problem [5]. We argue 
that for a decision problem to be well-defined, it must be possible 
to define a normative (best response) decision to the information 
provided to the study participants. In other words, whether the 
results of a study can be used to argue that humans are biased 
depends on the answer to the question: Could a rational agent who 
perfectly perceived the information have used it to identify a best 
response? Importantly, this best response is calculated relative to 
the information available to the participant. This makes it distinct 
from scoring responses directly against the ground truth outcome. 
As an example of the difference, imagine a study where participants 
are shown weather forecasts, and asked to make decisions about 
whether to bring an umbrella or not. Rather than concluding that a 
participant made the wrong decision to bring the umbrella because 
a simulated outcome was no rain, they should be scored relative 
to whether the choice they made maximized their expected utility 
according to the scoring function the researcher uses to tabulate 
results. Additionally, this scoring function should have been com-
municated to them if the researchers want to draw conclusions 
about how good their decisions were. 

We motivate this criterion by showing how performance loss 
can only be conceived of when a study participant could in theory 
identify how to optimize their behavior from the information they 
are provided. If, for example, the researchers had not communicated 
to participants of the weather forecast study sufficient information 
about how their responses would be judged, then we should expect 
different participants to make different guesses about what their 
goals should be. Consequently, their responses are incomparable, 
and it is left ambiguous what decision problem they thought they 
were solving. On the other hand, if they were provided sufficient 
information on the scoring process and provided forecast infor-
mation, it is in theory possible to distinguish between a limited 
set of errors that explain observed performance loss, such as not 
extracting all of the decision-relevant information from the display, 
or not being able to identify the best response given the information 
they did extract. 

To assess the extent to which recent empirical evaluations in HCI 
achieve this ideal, we apply our definition to 46 recent studies on AI-
assisted decision-making, finding that while 39 of the studies draw 
conclusions about shortcomings in human decisions with prediction 
displays, only 10 (26%) of these studies provided participants with a 
well-defined decision problem in at least one treatment condition. 

The benefits of adopting a more rigorous standard based in es-
tablished theoretical foundations for decision-making [5, 38] for 
empirical decision research in HCI, human-centered AI/ML, visu-
alization, and related fields are twofold. First, it stands to improve 
the validity of interpretations of individual studies. The variation 
induced when a decision problem is not clearly reported nor com-
municated to participants confounds our ability to interpret the 
results, in that it cannot be separated from variation induced by 
true differences in how people do a task under different conditions. 
Adopting a standard where the normative decision arises from a 

well-defined process puts researchers in a better position to point 
to possible sources of performance loss, and raises awareness of the 
limitations on what can be concluded from study results when a 
decision problem is under-communicated. Second, it paves the way 
for the development of theory. Only when a decision problem is 
well-defined can human responses to that problem be interpreted 
relative to the results of other studies (e.g., that explore variations 
on the problem). This provides HCI researchers an ability to make 
meaningful contrasts to drive theory development. Otherwise, any 
apparent differences in the quality of behavior may reflect noise 
induced by presenting participants with an underspecified problem. 

The paper is organized as follows. First, we define a decision 
problem, normative decision, and sources of performance loss for 
human decision-makers. Next, we provide study design recommen-
dations for applying this framework in practice. We present two 
example study designs in detail, and describe how they could be 
improved to align with the framework we present. We apply the 
framework to a sample of studies on AI-assisted decisions, illustrat-
ing the gap between the ideal it presents and current practice. We 
conclude with a discussion of limitations and future work. 

2 Defining a Decision Problem 
We define a decision problem and the normative decision given 
such a problem and enumerate possible sources of loss. Our defi-
nitions are intended for controlled evaluation of human behavior, 
a.k.a. normative decision research. Behavioral data (which may be 
produced by humans or by simulation) is collected under controlled 
conditions, with the goal of learning about behavior induced by the 
provision of information. Such studies are frequently used to de-
scribe the quality of human performance in some situation (e.g., how 
well people make decisions from displays in strategic settings [42]), 
to rank different assistive elements by human performance (e.g, 
different visualizations [10] or AI explanation strategies [31]), or to 
test a hypothesis about how humans make decisions or what will 
help them do better (e.g., cognitive forcing functions will improve 
AI-assisted decisions [6]). Critically, such evaluative studies require 
that ground truth can be identified for any hypothetical states of 
the world against which study participants’ decisions are evaluated. 

2.1 Decision Problem 
Our definition of a decision problem for controlled study starts 
by assuming a scenario in which there is some state of the world 𝜃 
which is uncertain at the time of the decision (uncertain state). 
The state is drawn from a state space Θ that describes the set of 
finite, mutually exclusive values that it can take. 

The data-generating model is a distribution over values of the 
uncertain state and signals that provide information to the agent 
about the state. The data-generating model associates the state with 
the information that the agent is presented with (the signal) in 
order to inform their decision; for example a model prediction or 
visualization of relevant data. Since the signal is correlated with the 
state, if the participant understands it in the context of the decision 
problem, they can improve their performance compared to a case 
where they do not have access to the signal. More precisely, the 
data-generating model defines a joint distribution (or information 
structure) 𝜋 ∈ Δ(V × Θ) over signals 𝑣 ∈ V and states 𝜃 ∈ Θ. 
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This joint distribution assigns to each realization (𝑣, 𝜃 ) ∈ V × Θ a 
probability, denoted 𝜋 (𝑣, 𝜃 ). 

If we ignore the signal 𝑣 , 𝜋 gives rise to a probability distribution 
over values of the uncertain state, which we denote as the prior dis-
tribution 𝑝 ∈ Δ(Θ). The prior 𝑝 (𝜃 ) is equivalent to 

 
𝑣 ∈V 𝜋 (𝑣, 𝜃 ). 

When we present a person (hereafter agent) with a decision 
problem, we give them a choice of response (action) 𝑎 from some 
set of possible responses (action space) A. The action space can be 
identical to the state space (as in AI-assisted diagnosis (e.g., [2]) or 
can be defined on a different space. In decision tasks corresponding 
to prediction tasks, (e.g., “What’s the probability the patient will be 
readmitted to the hospital?”), the action space is a probabilistic belief 
over the state space, i.e., A = Δ(Θ). The agent faced with a decision 
task must consider the probability of different states induced by 
the signal, and choose the best action under the scoring rule, a 
function that assigns a score representing the quality of the action 
for the realized state: 𝑆 : Θ × A → R. 

Under this definition, the formalization of the joint distribution 
𝜋 enables a definition of normative behavior. Summarizing informa-
tion about 𝜃 , 𝜋 (as well as 𝑝 ) and communicating it to the participant 
provides a basis for the experimenter to establish expectations un-
der optimal use of the information. 

2.2 Normative Behavior 
Given a decision problem defined as above, we calculate the nor-
mative (“optimal”) decision by assuming that the agent has coher-
ent preferences under a scoring rule (dictated by a small set of 
axioms [40]) and uses them to decide between actions under un-
certainty about the outcome. Consequently, we can interpret an 
experiment participant’s performance as an attempt at achieving 
this standard, and, if sub-optimal, identify sources of error (loss) in 
performance. 

2.2.1 Rational Belief Formation. To define the normative action 
for a decision problem, we must first characterize how we would 
ideally expect the agent to form the posterior beliefs 𝑞 about the 
state given the signal 𝑣 . A theory of optimal belief construction 
starts by assuming that the ideal (i.e., rational) agent perfectly 
perceives 𝑣 . Once perceived, how does 𝑣 inform the agent’s beliefs 
about 𝜃 ? Generally, we assume that the agent has some baseline 
set of beliefs about 𝜋 that they could use to choose an action in the 
absence of 𝑣 . Encountering 𝑣 leads the agent to Bayesian update 
their beliefs. 

Specifically, to calculate the optimal decision for a decision task 
we first define what the agent perceives the probability distribution 
over the state to be prior to obtaining information from 𝑣 : 𝑃𝑟 (𝜃 ) 
or 𝑝 (𝜃 ) as we describe above. Whenever the signaling policy does 
not reveal 𝜋 (𝜃 |𝑣 ) directly via the signal, but does inform on 𝜃 , we 
assume that after seeing the signal, the agent updates their prior 
belief to a posterior belief over signals and states, using Bayes 
rule based on what they know about the data-generating model 𝜋 . 
When the signaling policy does reveal 𝜋 (𝜃 |𝑣 ) directly via the signal 
(i.e., V ⊂ Δ(Θ) and 𝑣 = 𝑞), this update is trivial. The maximally 
informative posterior beliefs that any agent can arrive at given the 
decision problem is: 

𝑞 (𝜃 ) = 𝜋 (𝜃 |𝑣 ) = 𝜋 (𝑣,𝜃 ) 
𝜃 ′ ∈Θ 𝜋 (𝑣,𝜃 ′ ) (1) 

It is sometimes unreasonable to expect that 𝜋 can be communi-
cated to any agent, rational or not, without incurring some error. 
For example, in many studies that involve machine learning pre-
dictions based on many features and possibly many states (e.g., 
multi-label classification), communicating the joint distribution 
over signals and states without loss of information is impractical. 
Under such conditions, we expect the rational agent to arrive at 
posterior beliefs defined by: 

𝑞 (𝜃 ) = 𝜋 (𝜃 |𝑣 ) = 𝜋 (𝑣,𝜃 ) 
𝜃 ′ ∈Θ 𝜋 (𝑣,𝜃 ′ ) (2) 

where ˆ 𝜋 represents the approximation of 𝜋 that a rational agent 
arrives at given the information about 𝜋 employed by the study, 
such as a sample of labeled instances presented to approximately 
convey 𝜋 . 

2.2.2 Defining the Normative Action. Given the posterior beliefs as 
defined in Equation 1 or 2, we use Equation 4 to identify the action 
that a fully rational agent would choose in order to maximize their 
expected utility under 𝑆 . This is the normative decision. 

We assume that the agent’s goal is to maximize their expected 
score under the scoring rule 𝑆 : 

𝑆 (𝑎, 𝑞) = E𝜃∼𝑞[𝑆 (𝑎, 𝜃 )] (3) 

where 𝑞 describes the agent’s belief distribution, the probability 
distribution over the states that the agent believes the states of the 
world are drawn from, and 𝑆 (𝑎, 𝜃 ) represents the score assigned by 
𝑆 . 

The optimal action is then the action that maximizes the agent’s 
expected score: 

𝑎𝑜𝑝𝑡 = arg max 
𝑎∈A 

E𝜃 ∼𝑞[𝑆 (𝑎, 𝜃 )] (4) 

2.2.3 Eliciting and Scoring Beliefs. A scoring rule induces a “mean-
ing” on actions by demarcating a range of beliefs for which an action 
is optimal. Consequently, when different rules are applied to incen-
tivize participants versus to evaluate their responses, the meaning 
of a given action differs. One rule will by definition “misinterpret” 
the actions of the other by implying a different normative standard. 
This misinterpretation implies that the scoring rule should be con-
sistent across the two purposes of incentivizing participants and 
evaluating their responses. 

An exception to this requirement occurs when beliefs are elicited 
instead of decisions, and the rule used to incentivize belief reports 
has certain properties. Among scoring rules for beliefs, we can 
distinguish those that are proper scoring rules: scoring rules with 
A = Δ(Θ) for which the optimal action is to predict the true distri-
bution, i.e., 𝑝 ∈ arg max𝑎∈A E𝜃 ∼𝑝 𝑆 (𝑎, 𝜃 ). Under a proper scoring 
rule, it is not possible to score higher by reporting some alternative 
beliefs. These beliefs can then be plugged into a different proper 
scoring rule without the risk of misinterpretation. 

For any non-proper scoring rule 𝑆 : A × Θ → R there is an 
equivalent proper scoring rule ˆ 𝑆 : Δ(Θ) ×Θ → R defined by playing 
the optimal action under the reported belief. Formally, 

𝑆 (𝑝, 𝜃 ) = 𝑆 (arg max 𝑎 ∈A 𝑆 (𝑎, 𝑝), 𝜃 ) . (5) 

For example, applying the construction in Equation 5 to a binary 
decision gives a threshold rule where for each state, all reported 
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probabilities below a threshold receive one score and those above 
receive another score. 

2.3 Scope of the definitions 
The above definitions are applicable to any studies that aim to 
produce normative conclusions about human behavior. In such 
studies, behavioral data (produced by humans or simulation) are 
collected with the goal of learning about how behavior is induced 
by the provision of information. Such studies are frequently used 
to describe the quality of human performance in some situation 
(e.g., how well people make decisions from displays in strategic 
settings [42]), to rank assistive elements by human performance 
(e.g., different visualizations [10], AI explanation strategies [31], or 
prompts [6, 20]), or to test a hypothesis about how humans make 
decisions [23]. 

It is important to recognize that even if the researchers do not 
think about the elements of their experiment in terms of the com-
ponents identified above (i.e., statespace, data-generating model, 
signaling policy, action space, scoring rule), the design of their 
study still induces a decision problem whenever two simple con-
ditions hold [41]. First, there must be some uncertainty about the 
state (i.e., there is more than one data scenario used to generate 
stimuli)1 , and second, it must be possible to score decision quality 
consistently across participants. This requirement eliminates, for 
example, studies of emotional responses. 

2.4 Example 
To make these concepts concrete, imagine a study of AI-advised 
decisions in which people make decisions about whether to book a 
flight upon seeing features of the flight x ∈ X. The state is whether 
the flight will be delayed beyond some nominal number of minutes, 
which can take the value 0 for no or 1 for yes (𝜃 ∈ {0, 1}). The 
action space presented to the agent is whether or not to book the 
flight (𝑎 ∈ {0, 1}). 

The data-generating model is the joint distribution over the state 
(delay or not) and signals comprised of flight feature values and 
AI prediction information. Assume that participants are presented 
with a set of feature values describing a flight (origin, destination, 
time, carrier, prior delays in last 30 days, etc.) from which they 
must decide on an action. Imagine that the signal also includes the 
prediction from a model that participants are told was trained on a 
historical dataset of labeled examples. 

For a participant to in theory be able to form posterior beliefs 
about the probability that a flight is delayed after viewing such 
signals, they must have prior information about the data-generating 
model. The joint distribution 𝜋 ∈ Δ(V × Θ) assigns a probability, 
for each possible value of 𝜃 ({0,1}), to each possible signal 𝑣 = {x, 𝜃 } 
(a combination of feature values and model prediction) used as a 
trial in the experiment. Rather than attempting to communicate 
the exact prior to participants, imagine that before beginning the 
study trials, participants are provided with a finite set of labeled 
instances 𝐷 = {(x1, 𝜃1, 𝜃1), ..., (x𝑚, 𝜃𝑚, 𝜃𝑚)}, which defines a joint 
distribution ˆ 𝜋 over 𝑉 × Θ. Note that if we did not show the agent 
any feature values at all (nor model predictions), we would expect 

1A single trial study where all participants view the exact same signal would not 
qualify. 

them to make their choice based on the prior probability that a 
randomly drawn flight in the study will be delayed, 𝜋 (𝜃 ). 

Imagine the researcher uses a binary scoring rule to map the 
ground truth realization of the state (𝜃 ∈ 0, 1 for no delay, delay) and 
the participant’s selected action from the action space (𝑎 ∈ {0, 1}), 
say, booking the flight (𝑎 = 1), to an outcome. For example, the 
agent might be scored by the following rule, which imposes the 
greatest penalty on false negatives (i.e., booking the flight when it 
will be delayed): 

𝑆 (𝑎, 𝜃 ) = 

   

0.5 if 𝑎 = 1, 𝜃 = 0 book, no delay 
−1 if 𝑎 = 1, 𝜃 = 1 book, delay 
−0.5 if 𝑎 = 0, 𝜃 = 0 not book, no delay 
0.8 if 𝑎 = 0, 𝜃 = 1 not book, delay 

(6) 

where the score could be in units of USD, for example. 
The normative response to this decision problem is defined by 

the action that a rational agent selects after being presented with the 
problem (including the action space, scoring rule, and approxima-
tion of the data-generating model 𝜋 ), viewing the signal, updating 
their beliefs, and selecting the score-maximizing action. Figure 1 
illustrates this example. 

2.5 Defining Sources of Loss 
Consider the process implied by definitions in Sections 2.1-2.2, and 
how each step might result in lost performance relative to a rational 
agent: 

(1) Agent obtains prior → prior loss 
(2) Agent processes signal → receiver loss 
(3) Agent updates beliefs → updating loss 
(4) Agent takes optimal action → optimization loss 
For these four sources of loss to explain observed performance 

losses from study participants, we assume the participants under-
stand the decision problem described to them. However, it always 
possible that they do not, implying a fifth possible source of loss. 

Prior loss (1). The agent must obtain prior beliefs that match the 
prior beliefs the researchers assume in analyzing the problem. Prior 
loss is the loss in performance due to the difference between the 
agent’s prior beliefs and those used by the researchers to calculate 
the normative standard. 

Receiver loss (2). The agent processes the signal for the informa-
tion it provides about the value of the uncertain state. Receiver loss 
is the loss due to the agent not properly extracting the information 
from the signal, for example, because the human visual system con-
strains what information is actually perceived, because the process 
of rendering the signal induces noise, or because participants do 
not understand how to read the signal. 

Updating loss (3). Next the agent updates their prior beliefs with 
the information obtained. Updating loss is the loss due to the agent 
not updating their prior beliefs according to Bayes rule with the 
information they obtained from the signal, for example due to 
systematic deviations in human belief-updating relative to rational 
belief updating as prescribed by Bayes rule (e.g., [9]). 

Optimization loss (4). The agent decides by choosing a good ac-
tion under their posterior beliefs. Optimization loss is the loss in 
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Figure 1: Diagram depicting normative decision for example AI-assisted flight booking scenario. From left to right: The agent 
is informed of the decision problem, including the action, scoring rule, and prior information about the data-generating model. 
They next view a signal generated by the data-generating model, which is correlated with the state. The agent updates their 
beliefs about the state, then chooses the score-maximizing action (in this case, to not book the flight). 
performance due to not identifying the optimal action under the 
scoring rule. Optimization loss may include what perceptual psy-
chologists call “lapse” responses (e.g., from fatigue or inattention), 
a catch-all term used to denote responses that do not necessarily 
reflect the underlying function capturing the person’s beliefs. Or 
it may include “elicitation errors,” where what participants report 
on the response scale does not reflect what they had in mind as a 
result of bias or imprecision induced by the elicitation method. 

Misunderstanding the decision problem. A potential contribu-
tor to all four sources of loss above is the agent misunderstanding 
the decision task, including the scoring rule, the statespace, and/or 
the action space. Even when all necessary components of a decision 
problem are carefully communicated, the participant might not 
read the instructions carefully, or might not understand them. Con-
sequently, any tests that the researcher runs to validate hypotheses 
about biases stemming from particular sources of performance loss 
should be thought of as tests of the joint hypothesis comprised of 
the target hypothesis and the hypothesis that participants under-
stood the task. 

3 Applicability of the Normative Framework to 
HCAI Studies 

To illustrate the applicability of our definition, we present a meta-
study in which we analyzed a sample of recent evaluative studies 
of AI-assisted decisions to estimate how often researchers draw 
conclusions about flaws in human decisions without a well-defined 
decision problem. Note that HCAI studies are just one example of 
the kinds of decision studies to which our work applies (Section 2.3). 

Sample. We sampled 46 of the studies surveyed by Lai et al. [28] in 
their overview of empirical human-subjects studies on human-AI 
decision-making. According to their inclusion criteria, the sample 
contains only evaluative human-subject studies targeting a decision 
task in the context of classification or regression published in ACM 
or ACL conference venues between 2018 and 2021. 

Codes. In coding the studies, we focused on three aspects of the 
study design and interpretation. First, we identified whether our 
framework is applicable: Does the task given to participants admit 
a ground truth state and induce uncertainty about the state, at least 
across participants? Next, we identified whether the authors draw 
conclusions about flaws or performance loss in human decisions from 
their results, i.e., is the study evaluating human decision-making in 
some way? We identified whether the study targeted a well-defined 
problem; i.e., whether participants in the study were provided with 
sufficient information for a rational agent to best respond to the task. 
Finally, we noted whether the researchers reported conclusions using 
a different scoring rule than the one provided to participants, and 
whether participants were incentivized using a flat scoring rule (i.e., 
a rule that does not distinguish between responses based on their 
distance to the ground truth). Note that studies that pay participants 
a flat reward require that researchers report conclusions using a 
different scoring rule, introducing confounding. 

In some cases, coding was challenging because the paper did 
not provide much detail on what exactly was communicated to 
participants, nor provide the study interface as a supplement. This 
demonstrates a lack of sensitivity on the researchers’ part when 
it comes to providing requisite information to interpret their re-
sults. We noted such cases, and discuss how specific omissions are 
problematic. 
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Two authors participated in the coding. After formulating the 
coding scheme, the authors divided the sampled studies roughly 
evenly, each coding independently, then discussing all challenging 
examples to ensure consensus. The list of coded studies, our coding 
guide, and full coding results are available as an Appendix. 

Results. Of the 46 studies examined, 39 (85%) studied tasks to which 
the framework was applicable. One study posed questions and drew 
conclusions about the diagnostic utility of AI recommendations, 
but elicited only perceived utility [8]. We coded this example as 
Applicable. The remaining 7 (15%) included studies relegated to 
perceptions (e.g., of fairness, accuracy) and of subjective appraisals 
of music or movie recommendations or emotion. 

All 39 of the applicable studies drew conclusions about flaws 
in human decisions, such as by pointing to over- or underreliance 
on the AI or speculating about why participants failed to get the 
correct answer. However, when we evaluated whether participants 
were given sufficient information to identify the best decision re-
sponse across all conditions, this was true in only 7 of the 39 (18%) 
cases. In another 3 of 39 (7.7%), participants were given sufficient 
information to identify the best decision response in some subset 
of conditions. In the latter cases, informational differences between 
conditions that the researchers compared could lead to different a 
priori expectations of decision quality, yet these differences were 
not accounted for in comparing participants’ behavior between 
conditions2 . While the framework was clearly applicable, there was 
not enough information to determine if participants were presented 
with a well defined problem in 4 (10%) of the remaining studies. In 
other words, at best, over 70% of the surveyed studies did not give 
participants an opportunity to do well by the evaluation approach 
the researchers applied. 

Only 7 (18%) of the 39 studies to which the framework is applica-
ble used the same scoring rule to analyze the responses as was used 
to incentivize participants, illustrating a lack of awareness of the 
implications of using different rules for interpreting the meaning 
of responses. 25 (64%) did not, one did in at least one experiment, 
and another 6 (15%) did not report enough detail for us to know. 
Finally, 14 (36%) of the 39 used a flat rule for incentives, one did 
in some experiments, 16 (36%) did not, and 7 (18%) did not report 
enough detail for us to know. 

We observed that even when authors gave participants sufficient 
information to identify the best response, they rarely compared 
the observed performance to the best attainable performance. For 
example, multiple papers defined a scoring rule to incentivize par-
ticipants to make accurate decisions, but evaluated the responses 
using a simpler accuracy scale, implying that 100% accuracy was 
obtainable even when it would not be to a perfectly-perceiving 
rational agent. In some cases, participants were also given suffi-
cient information to optimize, but it did not accurately reflect the 
true data-generating model, such that the results interpretation did 
not hold. The most common scenario was when the researchers 
gave participants information about the model’s held-out accuracy 
but the participants experienced instances where the model had 
a different accuracy. Especially when the study design includes 
feedback, this leads to a contradiction between the instructions 

2The calculation of separate performance benchmarks would address such ambigu-
ity [41]. 

and what participants observe which makes it difficult to draw any 
evaluative claims about behavior. 

Altogether, these results suggest that the framework is widely 
applicable to swaths of studies currently being conducted in HCI 
and related fields. Moreover, they suggest that researchers stand 
to improve the interpretability of their research by adopting it by 
following recommendations that it implies, as we describe further 
below. 

4 Recommendations 
Our primary argument in this work is that to evaluate human 
decision-making, an experiment must provide the participant 
with enough information to in principle identify the nor-
mative decision, which is used to judge their behavior. In other 
words, does the experiment give the participant enough informa-
tion to align their understanding of the decision problem with its 
normative interpretation? 

The primary motivations for using the framework are epistemo-
logical in nature: they concern what knowledge can be gained from 
the results of a study. A lack of consensus around how to define a 
decision problem and the minimum required components for nor-
mative analysis leads to research landscape in which researchers 
can easily be tempted to overinterpret the results of their studies. 
Readers may not recognize the overinterpretations, leading to a 
research literature based on invalid claims about human biases. 

In contrast, when the experiment provides the participant suffi-
cient information, we can characterize forms of bias as loss in deci-
sion performance according to the four possible sources described 
in Section 2.5. When an experiment does not provide sufficient 
information for the participant to solve the task in principle, there 
is the potential for multiplicity concerning the data-generating 
model, as we cannot assume that the participant understood the 
data-generating model as the researcher intended. Consequently, 
researchers wishing to design a normative decision experiment 
should communicate all necessary components of the decision 
problem both to study participants and in publications. Specifically, 
we recommend that researchers: 

Clearly convey action and state spaces and a scoring rule. 
The finite action space A and statespace Θ should be clearly com-
municated to participants, and the action space reflected in the 
instruments used to collect participant responses. Because the op-
timal action can only be determined relative to a scoring rule 𝑆 : 
A × Θ → R that maps the action and state to a quality or payoff, 
participants should be given a scoring rule to reduce heterogeneity 
in their choice of action. This is necessary for interpretation even if 
the experimenter feels comfortable assuming that the participants 
will try their best and does not use the scores in assigning monetary 
rewards. 

Provide prior and/or sufficient information about the data-
generating model to calculate posterior. As discussed above, 
sufficient information about the data-generating model must be 
provided to arrive at the Bayesian posterior distribution. In design-
ing experiments, researchers should recognize that there is often 
more than one way for a study to provide sufficient information for 
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Figure 2: Results from coding 46 studies surveyed by Lai et al. [28]. Seven studies did not evaluate human decisions, instead 
focusing on capturing perceptions or subjective appraisals. Of the remaining 39, 25 did not communicate sufficient information 
to participants for them to identify the best response. Additionally, 25 did not use the same scoring rule for incentivizing 
participants as for analyzing their responses. 
a rational decision-maker to identify the normative decision. How-
ever, the fact that experiment designs can vary in the amount of 
information they provide participants about 𝜋 or how they provide 
this information does not mean that anything goes when it comes to 
what information is provided. Regardless of the specifics, sufficient 
information for a rational agent to identify the best response must 
be provided to interpret the results. 

For many experiments, it is critical to convey 𝜋 or an approxima-
tion of 𝜋 as the prior in order for participants to be able to update 
these beliefs upon viewing signals. However, for some experiments, 
it is instead possible for the signal to directly inform of the posterior 
probability of the state. For example, in a visualization study that 
asks users to decide whether or not they want to purchase a piece 
of special equipment expected to improve their score in a game 
(e.g., [19, 23]), a visualization of the player’s expected score distri-
bution with and without the equipment (from which the realized 
outcome is drawn depending on their choice) conveys the posterior 
probability of the state directly. 

Whenever the signal on its own does not induce a posterior, the 
prior should be endowed, and sufficient information about 𝜋 should 
be provided to enable estimating 𝑃𝑟 (𝑣 |𝜃 ) and 𝑃𝑟 (𝑣 ). Exemplar-
based training procedures such as have been used to teach humans 
when to defer to an AI model can be employed for this purpose [32]. 
More generally, using presentation formats that are more likely to 
be automatically processed (e.g., conveying distribution information 
via frequency animations [16, 21]) or validating participants’ priors 
through elicitation (e.g., [24, 25]) can help researchers understand 
and minimize prior loss. 

Use the same scoring rule for incentivization and evaluation, 
or elicit beliefs with a proper scoring rule. As described above, 
using different scoring rules for incentivizing participants versus 
evaluating their responses means that “good” behavior is defined 
differently across these two activities, confounding interpretation. 
Researchers should use the same rule to avoid this confound. 

An exception to this rule applies when beliefs are elicited using 
a proper scoring rule but behavior is analyzed using a different, 
downstream rule. There are several benefits to eliciting beliefs using 
a proper scoring rule, in place of or in addition to eliciting decisions. 

First, when a proper scoring rule is used, the researcher can assume 
that an agent who understands the rule properly will report their 
true beliefs. This supports interpretation by eliminating "deviation 
by design," referring to how deviation from honest reporting is 
not technically a loss under a non-proper rule, it should be the 
expected behavior under that rule. In other words, in a non-proper 
scoring rule, we cannot interpret as biased the behavior of a study 
participant who does not report the appropriate beliefs after exam-
ining the signal. Eliciting beliefs using a strictly proper scoring rule 
enables plugging the elicited beliefs into other scoring rules.3 

Second, belief elicitation through proper scoring rules can pro-
vide benefits in the form of more information captured in the elicited 
responses. In general, a coarser action space (i.e., with fewer choices 
available to participants) will produce less informative responses 
for the purpose of resolving observed performance relative to a 
normative standard. For example, if the researcher designed the 
flight booking study to also elicit the agent’s beliefs, in the form of 
their prediction of the probability of delay, each trial would provide 
more information, and they could employ a proper scoring rule 
such as squared loss (i.e., Brier or quadratic rule) or log score to 
score the accuracy of the probabilistic beliefs. 

When eliciting beliefs, one should also acknowledge that dif-
ferent proper scoring rules imply different expectations about the 
set of possible decisions [29]. See Li et al. [30] for a discussion of 
scoring rules that have a high information value for the rational 
agent. 

Compare to best attainable performance. We observed that 
even when researchers invest effort to design scoring rules to incen-
tivize participants, they do not often compare the observed behav-
ioral performance to the best attainable performance under the rule. 
Researchers should default to analyzing results in the space of the 
scoring rule used for incentives, and provide a rationale whenever 
they deviate. 

Account for learning when providing feedback. Some experi-
ment designs support learning about 𝜋 by providing participants 
feedback informing them of the realized state after each decision 

3See, e.g., Wu et al. [41]’s analysis of [23]. 
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trial. When feedback is provided, we would expect the Bayesian 
rational decision-maker to update their beliefs according to the 
information they gain about the joint distribution between signals 
and states. Imagine that participants in the flight booking study see 
feedback (i.e., are told the realized state, whether or not the flight 
was delayed) after each decision they make. Assuming the signal is 
not revealing of the posterior probability of the state (delayed or 
not), we would naturally expect the participants to learn about 𝜋 
from this feedback as they complete trials, affecting their posterior 
beliefs (Equation 2). A challenge in using this approach without 
providing other information about 𝜋 (i.e., through signals and the 
prior) is that how much a participant can learn from any single trial 
is quite limited. Hence, such designs tend to require many trials if 
the goal is to study behavior under relatively stable beliefs about 
the data-generating process. 

Elicit measures to estimate specific sources of loss. Assuming 
the same decision problem has been conveyed to participants as 
the researchers analyze, it becomes possible to conceive of a set 
of losses to aid interpretation of results. How to estimate sources 
of loss in an unbiased way is a rich area for future work. In many 
cases, we expect separating losses to entail adding carefully con-
structed questions to the experimental procedure, and/or construct-
ing benchmarks based in rational agent performance to separate 
sources of loss in observed results. For example, Wu et al. [41] 
use the notion of a calibrated behavioral agent along with a ra-
tional agent benchmark and baseline (expected performance of a 
rational agent under only the prior) to separate optimization and 
receiver loss. An important area for future theoretical work is to 
establish under what conditions the losses we conceptualize can be 
estimated. 

Conduct design analysis. Researchers doing normative decision 
research can benefit from conducting analyses prior to running 
the study that simulate the idealized actions of an agent to vet 
the experiment design (see, e.g., Wu et al. [41]’s pre-study analy-
ses for visualization studies and Guo et al. [18]’s analysis of the 
potential for complementarity in AI-assisted decisions). Simulation-
based design analysis forces the researcher to explicitly define the 
parameters of their decision problem, which can elucidate what 
information needs to be communicated to a participant in order to 
enable an optimal response. It also enables the researcher to test 
variations on their data-generating model and scoring rule, which 
can help the researcher realize under what conditions (1) the ex-
periment can have acceptable statistical power and (2) participants 
can be paid fairly. Design analysis helps the researcher choose con-
ditions (e.g., AI explanations) that provide informative signals for 
the decision task, narrowing down what kinds of research ques-
tions can be answered using a particular decision problem. For 
example, at a minimum, to be informative of how effectively people 
use signals, a study design must have sufficient statistical power 
to separate the rational agent performance with and without the 
signal. 

5 Examples: Using the Framework to Redesign 
Confounded Studies 

We use several examples inspired by the human-centered AI and 
visualization literature to demonstrate why drawing conclusions 
about biases in human behavior is misleading in scenarios where 
sufficient information for a rational agent to optimize is not pro-
vided. We discuss how the example study designs could be improved 
to align with the definitions in Section 2. 

5.1 AI-Assisted Flight Booking 
We first elaborate the flight booking study mentioned earlier. Imag-
ine the study is designed to investigate whether people over-rely 
on AI assistance when deciding whether to book a flight or not. 
The researchers use a standard train-validate-split approach on 
a large labeled historical data set to train a model that predicts 
whether or not a flight will be delayed. Each flight in the dataset 
is represented by a set of feature values, 𝑋 = x, which comprise 
part of the signal 𝑣 shown on each trial. Study participants are 
randomly assigned to either a control condition where they see the 
feature values along with only the model’s prediction and what 
is described as “the model’s confidence in its prediction, ranging 
between 50% and 100%,” or an AI explanation condition where they 
are also given additional information about how features in the data 
contribute to the model’s predictions, e.g., generated by LIME [37]. 
The model confidence score that is provided is an approximately 
calibrated probability4 of a correct prediction conditional on the 
feature values, 𝑃𝑟 (𝑐𝑜𝑟𝑟 𝑒𝑐𝑡 |𝑋 = x). 

Participants are told the AI model was trained on prior flights 
whose delay status is known. They are told that the model has an 
accuracy of 80% (representing the combined false positives and 
false negatives) on a sample of instances drawn from the test set 
which comprise the trials in the study. 

Each participant makes booking decisions for 20 unique flights. 
On each trial they are asked to choose whether or not to book the 
flight (𝑎 ∈ {0, 1}). Rather than the scoring rule given in Equation 
6, imagine a simpler version that assigns different types of errors 
equivalent costs. Participants are given a base reward of $10𝑈 𝑆𝐷 , 
but they are told they will lose $0.5𝑈 𝑆 𝐷 from this initial endowment 
for every trial where they either book a flight that will be delayed 
or do no book a flight that will not be delayed. Participants are not 
told how often to expect delays; i.e., the prior 𝑝 is not endowed, nor 
is 𝜋 . Participants are not given interim feedback on their decisions. 

After collecting data from 500 participants, the researchers model 
the percentage of trials where the participants incorrectly follow the 
AI’s advice. They find a statistically significant difference between 
the AI explanation condition and the control condition, with the rate 
of incorrectly following the AI’s advice being higher in the former. 
The researchers interpret this as evidence that AI explanations 
promote over-reliance. 

4A confidence function 𝑓𝐵 : 𝑋 → [0, 1] is 𝛼 -calibrated with respect to a sample 
𝑆 ⊆ 𝑋 if there exists some 𝑆 ′ ⊆ 𝑆 , with |𝑆 ′ | ≥ (1 − 𝛼 ) |𝑆 | , such that for any 
𝑏 ∈ [0, 1]: |𝑃 (𝑌 = 1 | 𝑓𝐵 (𝑋 ) = 𝑏, 𝑋 ∈ 𝑆 ′ ) − 𝑏 | ≤ 𝛼 [11]. In other words, the 
probabilities are approximately calibrated with respect to a sample 𝑆 when for some 
subset at least 1 − 𝛼 times the size of 𝑆 , the difference between the stated and real 
probability is less than or equal to 𝛼 . 
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Interpretation of Results. To assess what can be said about perfor-
mance loss, we first consider whether the problem is well-defined: 
could a rational agent use the provided information to select the 
utility-maximizing decision? 

The action space 𝐴 (𝑎 = 1 for book, 𝑎 = 0 for not book) is 
conveyed to participants, as well as the state space Θ (𝜃 = 1 for 
the flight being delayed, 𝜃 = 0 for not). Through the information 
they are given about the task payouts, they also have knowledge 
of the scoring rule that assigns a score (reward amount) given the 
realized state and their decision. 

How would a rational participant form beliefs about the pos-
terior probability of the state? Participants are not provided with 
information about the prior probability of the state. This would 
be acceptable if the signal provided them with posterior beliefs 
about the uncertain state. However, the signal does not provide the 
required posterior probability: recall that participants receive the 
estimated probability that the model is correct conditional on the 
features, 𝑃𝑟 (𝑐𝑜𝑟 𝑟 𝑒𝑐𝑡 |𝑋 = x), but not conditional on the model’s pre-
diction. They therefore cannot obtain sufficient information from 
the data-generating model 𝜋 to guide their choice of action. 

Improving the experimental design. One possibility is to make 
the signal provide the posterior 𝑞 (𝜃 ). This could be achieved if the 
confidence value included in the signal were to give the probability 
that the model is correct conditional on both the features and the 
prediction, e.g., 𝑃𝑟 (𝑐𝑜𝑟 𝑟 𝑒𝑐𝑡 |𝑋 = x, 𝑦𝐴𝐼 = 1) when the model pre-
dicts 1. In this setting, provision of the prior would not be necessary 
(and may confuse participants). 

However, the careful reader may also have noticed another bar-
rier to defining bias for the problem: the model’s conditional con-
fidence is described as simply “the model’s confidence in its pre-
diction”, making it ambiguous from the participant’s perspective 
whether it is conditional on the features and model prediction or 
only one of the two. The normative response is not well-defined if 
the probability is not conditional on both, unless the researchers 
also communicate 𝜋 or an approximation ˆ 𝜋 to participants before 
they begin the decision trials. Hence the model probability descrip-
tion would need to be amended to specify that the confidence is 
conditional on the predicted label to eliminate ambiguity. 

It is worth noting that decision problems do not necessarily 
have to depend on small, discrete action spaces. Imagine another 
amendment to the flight booking study where instead of asking 
participants for a booking decision, the researchers ask them to 
report the probability that the flight is delayed 𝑃𝑟 (𝜃 |𝑣 ). Assuming 
the above changes are made to the design to equip participants 
with information to form posterior beliefs, participants could in 
principle report the optimal beliefs. However, if the scoring rule 
for a decision problem where the action space is over beliefs is 
not proper, we should not expect the agent to respond with their 
true beliefs. Optimization loss might be low, but this is not useful 
to the experimenters’ research questions if agents respond with a 
distortion of their true beliefs. 

5.2 Election Forecast Displays 
Imagine a study targeting the effect of different ways of visualizing 
election forecasts. The researchers develop a forecasting model to 
predict vote share (a percentage) by weighting and aggregating 

poll results from news sources for ten unique upcoming two-party 
state-level elections. Participants are randomly assigned to view 
one of three forecast displays showing the predicted vote share 
with uncertainty of each party’s candidate as a table, an animated 
graphic, or a static graphic. Assume for simplicity that all three 
induce informationally equivalent signals to a rational agent5 . 

Upon beginning the experiment, participants are randomly as-
signed to a display treatment and also assigned a political party 
preference. They are told they will view election forecasts from a 
model based on poll results and should imagine they live in the 
district where the election takes place. Each participant in the study 
does ten trials corresponding to the ten elections. On each trial, 
they are asked if they would like to vote for the candidate in the 
election. Voting carries no cost. 

Participants are told they will win a given base reward amount 
plus an additional $0.25𝑈 𝑆𝐷 “for each trial where their candidate 
wins a simulated version of the election that uses the forecast 
model to predict how people will vote.” The researchers generate 
outcomes by randomly drawing a bivariate vote share outcome 
from the predicted distribution under the model and generating 
the uncertain state 𝜃 (taking the value 0 or 1 for lose or win) by 
assuming the higher vote share candidate wins. Participants are 
not given feedback after each trial. 

After collecting results for several hundred participants, the re-
searchers fit a linear model that estimates the sensitivity of the 
vote decision to a variable denoting the closeness of the race, oper-
ationalized as the difference between the predicted vote share of 
the first candidate and 0.5. The researchers postulate that a better 
display induces more sensitivity. Using statistical significance test-
ing, they reject the null hypothesis of no difference between the 
estimated slopes for the interaction between display type and race 
closeness across display types. Using posthoc comparisons, they 
declare that the animated graphic leads to better voting decisions 
because it induces the most sensitivity. 

Interpretation of Results. To understand why the researchers’ 
conclusions might be misleading as a prediction of real world use of 
election displays, consider the decision problem from the perspec-
tive of the participants. The action space A (𝑎 = 1 for vote, 𝑎 = 0 for 
not vote) is conveyed to participants, and the task description also 
gives participants the statespace Θ (𝜃 = 1 for their candidate win-
ning, 𝜃 = 0 for not). Participants can infer the probability of their 
candidate winning from the signal showing the model predicted 
vote share. Because the signal provides the posterior probability of 
the state, no prior information needs to be communicated. 

What do participants know about the realized outcome of the 
election that the researchers describe simulating? The researchers 
described the use of the forecast model to simulate voting behavior, 
and in implemention, do not account for the participant’s vote in 
generating the outcome. Consequently, whether a participant votes 
is irrelevant to the payoff-relevant state under the scoring rule. 
However, the description provided to participants is ambiguous 
about whether the participant’s vote counts. Some participants 
might assume, based on their knowledge of real-world elections, 

5If any of the displays was not informationally equivalent to the others, the optimal 
decision may vary by display. See Wu et al. [41] for analysis of such examples using a 
rational agent framework. 
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that it does. Hence performing well in the experiment requires 
being able to guess what the researchers have in mind, rather than 
behaving rationally in the context of the experiment. 

Because, in the context of the study, voting carries no value 
but also no cost, we cannot conceive of the four sources of loss. 
There is no well-defined decision problem, and consequently, no 
formal justification for concluding that behavior is more biased or 
otherwise worse under one display condition. 

Improving the experimental design. We could create a valid 
decision problem by changing the scoring rule so that the reward 
amount depends on whether one votes. For example, we could 
assign a cost of $0.25 to voting: 

𝑆 (𝑎, 𝜃 ) == 

   

0 if 𝑎 = 0, 𝜃 = 0 do not vote, lose election 
0.5 if 𝑎 = 0, 𝜃 = 1 do not vote, win election 

−0.25 if 𝑎 = 1, 𝜃 = 0 vote, lose election 
0.25 if 𝑎 = 1, 𝜃 = 1 vote, win election 

(7) 
However, the decision problem does not admit a well-defined 

normative response until we address the ambiguity in the descrip-
tion of the data-generating model. Only if participants are given a 
transparent description of how the realized outcome is generated 
from the model can we conceive of prior loss as well as updating 
loss, both of which should be zero given the signal design. We can 
conceive of receiver loss as the loss from participants not being able 
to extract the information from the signal, and optimization loss 
as the loss from participants not being able to choose the optimal 
action under their beliefs. 

Of course, if we amend the description to inform participants of 
how the election outcome is actually generated, we should expect 
participants who understand the problem to never vote. Rather 
than informed political engagement, the proportion of participants 
who vote (e.g., in each treatment condition) could be described as 
reflecting the level of confusion the participants had about the task. 
Or, if the researchers did not change the description of how the 
realized state is generated, but designed the study to give partici-
pants feedback on the realized state after each decision, then the 
participants might in theory learn that their vote does not matter. 
This would work against the researchers’ goals of presenting a 
situation where people could feel compelled to vote. 

This example demonstrates that providing participants sufficient 
information to determine the utility-maximizing action is necessary 
but not sufficient for a meaningful decision problem in light of the 
research questions of interest. 

6 Discussion: Goals and Incentives in the Lab 
versus the World 

By arguing that researchers adopt and sufficiently communicate to 
participants a widely-applicable definition of a decision problem, 
our goal is to improve the integrity of claims made from human 
subjects experiments. When participants are not given ample in-
formation to “solve” at least in principle the decision problem, we 
cannot bring well-formed expectations to the results, and should 
expect heterogeneity in the behaviors they exhibit. Such “hetero-
geneity by design” renders the results uninterpretable for evaluative 
purposes like identifying forms of bias. 

Imagine that the researchers who designed the voting task in-
tentionally did not include the vote in the scoring rule, and were 
intentionally ambiguous about the role of the vote in the data-
generating model. Because the utility of voting in a real-world 
election is typically known only implicitly at an individual level 
and likely to vary between people, the researchers might think that 
their results would therefore be more representative of real world 
voting behaviors. 

Such beliefs stem from a convention among many researchers 
toward being optimistic about how their experimental observations 
relate to people’s behavior in the “real world.” Most controlled 
decision studies are designed to help us understand how people 
behave in some realistic setting that the experimental task is meant 
to proxy for. However, in the real world, people have goals and 
prior beliefs. We might not be able to perceive what utility function 
each individual person is using, but we can assume that behavior is 
goal-directed in one way or another. Savage’s axioms [39] and the 
derivation of expected utility theory tell us that for behavior to be 
rationalizable, a person’s choices should be consistent with their 
beliefs about the state and the payoffs they expect under different 
outcomes. 

Consequently, when people are in an experiment, we should not 
expect the analogous real world goals and beliefs for that kind of 
task to apply. For example, people might take actions in the real 
world for intrinsic value—e.g., voting in order to feel like a good 
citizen, or paying close attention to features of a flight they are 
deciding whether to book because the decision will impact whether 
or not they arrive in time for an important event. It is difficult 
to motivate people to take actions based on intrinsic value in an 
experiment, unless the experiment is designed to elicit and describe 
those intrinsic values, in which case the normative framework here 
no longer applies. Hence, the idea that as experimenters we can skip 
fully describing the decision problem to our participants while still 
retaining the ability to identify their behavior as faulty or biased 
arises from a failure to recognize our fundamental uncertainty 
about how the experimental context relates to the real world. 

6.1 Implications for Research Ethics 
The requirement of communicating to study participants sufficient 
information for a rational agent to optimize may seem unnecessarily 
strict if one assumes that participants’ domain knowledge alone 
should enable them to evaluate the information about the state 
captured in signals. For example, in the flight booking example, a 
researcher may be tempted to assume that even without being given 
any information about the probability that the model prediction 
is correct, a participant will be able to use their prior knowledge 
about features of delayed flights to infer the probability that the 
model prediction is correct. The problem is that once a researcher 
makes this assumption, they are no longer evaluating participants 
on only the information they provided. They are also implicitly 
evaluating them on how well their prior beliefs about the state 
and the validity of the model’s learned information align with the 
researcher’s choice of data-generating model. There are various 
implications of this misalignment that we may find problematic 
upon reflection. For example, under such conditions, participants 
must bring identical beliefs to the researchers’ in order to have a 
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chance of scoring well. A related point has been made in research 
on crowdsourcing, where it has been observed that there are often 
many plausible ways to interpret a crowdsourced task based on 
the information workers are provided, but work requesters often 
use quality control algorithms that recognize and pay only one of 
these [1, 22]. 

Fortunately, this does not mean that human decisions can only be 
evaluated by assuming that participants bring no additional infor-
mation. Instead, the data-generating model and decision task should 
account for the presence of human prior information. For example, 
for AI-assisted decision tasks like the flight booking example (2.4), 
a human prediction of the delay status of a flight, governed by a 
distinct generating process from the AI prediction, can be included 
in the data-generating process. The decision problem for which the 
normative decision is sought can then be cast as a decision between 
the human and AI prediction. If independent human predictions 
are not available, they can be elicited from the subjects before pro-
viding the signal. Recent work by Guo et al. [18] demonstrates this 
approach. 

6.2 Limitations & Future Work 
Our argument is that the interpretation of results is restricted when 
a well-defined decision problem is not conveyed to participants, not 
that researchers cannot conduct comparisons at all without a well-
defined decisions. Researchers can conduct and report on studies 
that do not conform to this approach, but they cannot conclude 
that people made bad decisions if they were not given sufficient 
information to know what a good decision is. For example, imagine 
a study comparing the decision performance of users with and 
without the use of recommendations from an AI, where no prior 
is given to participants, and no scoring rule is given. Imagine that 
performance in the study is measured in terms of accuracy, and 
average accuracy is higher among participants who had access to 
the AI. Given an appropriately designed randomized experiment, 
the researcher could conclude that there is a causal effect of the 
AI on decisions. However, they could not claim that people are 
making worse or biased decisions without the AI, because they are 
scoring their decisions using information they never provided to 
participants. When we say that one condition did better, we should 
acknowledge that we did not give them a chance to fully understand 
and optimize their behavior for the problem that we analyzed. 

A common misinterpretation of the use of a rational agent model 
is that we are implying that human behavior is expected to be 
perfectly rational, or approximately rational. This is not the case. 
While a rational agent approach formally justifies what it means 
to best use information to inform the selection of an action using 
statistical decision theory, participants in our experiment may use 
different strategies. The point is that without a definition of what 
it means to best respond to the information we have provided, we 
are hard-pressed to evaluate participant behavior. Even if we do 
not expect this procedure to characterize what human agents do, it 
provides a basis for interpreting the results in terms of deviations 
from a well-understood standard. 

Several challenges have been raised against expected utility 
theory as put forth by Savage [38]; we recommend [39] for an 
overview. Another critique of a normative approach dubbed “value 

collapse” [33] is that presenting a clear set of values as a target for 
behavior limits variance in ways that can be harmful. Our argu-
ment is that we should not mistake the variation that emerges from 
in an under-communicated decision problem as representative of 
behavior under a particular set of values or a particular real-world 
decision task. If a researcher wishes to evaluate decisions but con-
tests Bayesian decision theory as a normative standard, they should 
be prepared to motivate whatever standard they adopt instead with 
equivalent rigor (e.g., derivation from interpretable assumptions 
combined with mathematical laws). We note that alternative mod-
els have been well-explored, but rarely achieve provable grounding 
relative to mathematical laws as statistical decision theory does. 

Sometimes researchers are explicitly interested in understanding 
the range of values at play in a naturalistic decision scenario rather 
than providing a well-defined decision problem. In this case, their 
research is better characterized as descriptive, and they should 
refrain from claims that hinge on evaluating participant decisions. 
While our framework is intended for normative decision research, 
the definitions may also be useful if one is doing such descriptive or 
exploratory decision research, by making clear which aspects of the 
decision problem are underspecified and therefore presumably the 
object of study. For example, a researcher might aim to characterize 
challenges in model-assisted decisions in a particular domain [43], 
or conduct an exploratory study to elicit information about the 
utility function (i.e., scoring rule) that operates in a setting and then 
communicate it back to new participants as part of the decision 
problem in an evaluative experiment (e.g., [14]). 

Some have voiced pessimistic views on the value of monetary 
incentives for experiment participants (e.g., [36]). As Wu et al. [41] 
show, this view is to be expected under a rational agent approach 
whenever the value of information to the decision problem (i.e., 
the difference in the rational agent’s expected score given only the 
prior versus with access to the signals [41]) is small. This motivates 
analyzing whether a decision study is likely to provide agents with 
a sufficient incentive to motivate them to consult the signals [41]. 

Of course, scoring rules can sometimes be challenging for study 
participants to interpret. Theoretic incentive compatibility does not 
guarantee understanding on the part of subjects. There is a rich 
literature discussing possible descriptions that can be used with 
common rules like the quadratic scoring rule (e.g., [3]). Interfaces 
researchers may be in a good position to extend this literature 
through careful observational studies. More broadly, however, the 
insensitivity of human participants to monetary incentives are 
orthogonal to the crux of our argument, which is philosophical and 
concerned with what is knowable more so than the pragmatics of 
how much behavior changes when a problem is well-defined. 

7 Conclusion 
We present definitions of a decision problem and normative re-
sponse synthesized from statistical decision theory and information 
economics for the purpose of improving the interpretability of deci-
sion studies in HCI, visualization, human-centered AI, and related 
fields. We demonstrate the applicability of the framework to recent 
HCAI studies, and provide specific recommendations to researchers 
and examples of how confounded study designs can be made inter-
pretable or well-formed within the framework. Ultimately, the goal 
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of our work is to give researchers the tools to recognize that when 
we do experiments, we are restricted to learning about behavior in 
the artificial worlds we create. As much as we might want to equate 
our results with some real world setting used as motivation, ex-
trapolating from the world of the controlled experiment to the real 
world will always be a leap of faith. It is therefore the responsibility 
of the experimenter to fully understand their experimental world, 
and, for the purposes of offering the results as a form of potentially 
generalizable knowledge, to give their participants a chance to do 
so as well. 
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8 Appendix 

8.1 List of coded studies 
We randomly sampled and coded the following studies from Lai 
et al. [27]: 

1. A. Abdul, C. von der Weth, M. Kankanhalli, B. Lim. (2020). 
COGAM: Measuring and Moderating Cognitive Load in Machine 
Learning Model Explanations. 

2. A. Alqaraawi, M. Schuessler, P. Weiß, E. Costanza, N. Berthouze. 
(2020). Evaluating Saliency Map Explanations for Convolutional 
Neural Networks: A User Study. 

3. G. Bansal, T. Wu, J. Zhou, R. Fok, B. Nushi, E. Kamar, M. T. 
Ribeiro, and D. Weld. (2021). Does the whole exceed its parts? the 
effect of AI explanations on complementary team performance. 

4. G. Bansal, B. Nushi, E. Kamar, W.S. Lasecki, D.S. Weld, E. 
Horvitz. (2019). Updates in Human-AI Teams: Understanding and 
Addressing the Performance/Compatibility Tradeoff. 

5. G. Bansal, B. Nushi, E. Kamar, W.S. Lasecki, D.S. Weld, E. 
Horvitz. (2019). Beyond Accuracy: The Role of Mental Models in 
Human-AI Team Performance. 

6. R. Binns, M. Van Kleek, M. Veale, Ulrik Lyngs, J. Zhao, N. 
Shadbolt. (2018). ‘It’s Reducing a Human Being to a Percentage’; 
Perceptions of Justice in Algorithmic Decisions. 

7. Z. Buçinca, M.B. Malaya, K.Z. Gajos. (2021). To Trust or to 
Think: Cognitive Forcing Functions Can Reduce Overreliance on 
AI in AI-assisted Decision-making. 

8. Z. Buçinca, P. Lin, K.Z. Gajos, E.L. Glassman. (2020). Proxy 
Tasks and Subjective Measures Can Be Misleading in Evaluating 
Explainable AI Systems. 

9. A. Bussone, S. Stumpf, D. O’Sullivan. (2015). The Role of Expla-
nations on Trust and Reliance in Clinical Decision Support Systems. 

10. C. Cai, E. Reif, N. Hegde, J. Hipp, B. Kim, D. Smilkov, M. 
Wattenberg, F. Viegas, G.S. Corrado, M.C. Stumpe, M Terry. (2019). 
Human-Centered Tools for Coping with Imperfect Algorithms dur-
ing Medical Decision-Making. 

11. S. Carton, Q. Mei, P. Resnick. (2020). Feature-Based Explana-
tions Don’t Help People Detect Misclassifications of Online Toxicity. 

12. A. Chandrasekaran, V. Prabhu, D. Yadav, P. Chattopadhyay, D. 
Parikh. (2018). Do Explanations make VQA Models more Predictable 
to a Human? 

13. H-F. Cheng, R. Wang, Z. Zhang, F. O’Connell, T. Gray, F.M. 
Harper, H. Zhu. (2019). Explaining Decision-Making Algorithms 
through UI: Strategies to Help Non-Expert Stakeholders. 

14. M. Chromik, M. Eiband, F. Buchner, A. Krüger, A. Butz. (2021). 
I Think I Get Your Point, AI! The Illusion of Explanatory Depth in 
Explainable AI. 

15. D. Das and S. Chernova. (2020). Leveraging Rationales to 
Improve Human Task Performance. 

16. B.J. Dietvorst, J.P. Simmons, C. Massey. (2018). Overcoming 
Algorithm Aversion: People Will Use Imperfect Algorithms If They 
Can (Even Slightly) Modify Them. 

17. J. Dodge, Q.V. Liao, Y. Zhang, R. Bellamy, C. Dugan. (2019). Ex-
plaining Models: An Empirical Study of How Explanations Impact 
Fairness Judgment. 

18. J. Dressel, H. Farid. (2018). The accuracy, fairness, and limits 
of predicting recidivism. 

19. K. Gero, Z. Ashktorab, C. Dugan, Q. Pan, J. Johnson, M. Ruiz, S. 
Miller, D. Millen and W. Geyer. (2020). Mental Models of AI Agents 
in a Cooperative Game Setting. 

20. B. Ghai, Q.V. Liao, Y. Zhang, R. Bellamy, K. Mueller. (2021). 
Explainable Active Learning (XAL): An Empirical Study of How 
Local Explanations Impact Annotator Experience. 

21. B. Green, Y. Chen. (2019). Disparate Interactions: An Algorithm-
in-the-loop Analysis of Fairness in Risk Assessments. 

22. S. Guo, F. Du, S. Malik, E. Koh, S. Kim, Z. Liu, D. Kim, H. 
Zha, and N. Cao. (2019). Visualizing Uncertainty and Alternatives 
in Event Sequence Predictions. 

23. P. Hase, M. Bansal. (2020). Evaluating Explainable AI: Which 
Algorithmic Explanations Help Users Predict Model Behavior? 

24. R. Kocielnik, S. Amershi, P.N. Bennet. (2019). Will you Ac-
cept an Imperfect AI? Exploring Designs for Adjusting End-user 
Expectations of AI Systems. 

25. T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, W-K. Wong. 
(2013). Too Much, Too Little, or Just Right? Ways Explanations 
Impact End Users’ Mental Models. 

26. J. Kunkel, T. Donkers, L. Michael, C-M. Barbu, J. Ziegler. (2019). 
Let Me Explain: Impact of Personal and Impersonal Explanations 
on Trust in Recommender Systems. 

27. I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman, F. 
Doshi-Velez. (2019). An Evaluation of the Human-Interpretability 
of Explanation. 

28. A. Levy, M. Agrawal, A. Satyanarayan, D. Sontag. (2021). As-
sessing the Impact of Automated Suggestions on Decision Makingg: 
Domain Experts Mediate Model Errors but Take Less Initiative. 

29. V. Lai, C. Tan. (2019). On Human Predictions with Explana-
tions and Predictions of Machine Learning Models: A Case Study 
on Deception Detection. 

30. Z. Lin, J. Jung, S. Goel, J. Skeem. (2020). The limits of human 
predictions of recidivism. 

31. J.M. Logg, J. Minson, D.A. Moore. (2019). Algorithm Appreci-
ation: People Prefer Algorithmic To Human Judgment. 

32. Lu, Z., M. Yin. (2021). Human reliance on machine learning 
models when performance feedback is limited: Heurstics and risks. 

33. K. Mallari, K. Inkpen, P. Johns, S. Tan, D. Ramesh, E. Kamar. 
(2020). Do I Look Like a Criminal? Examining how Race Presenta-
tion Impacts Human Judgement of Recidivism. 

34. S. McGrath, P. Mehta, A. Zytek, I. Lage, H. Lakkaraju. (2020). 
When Does Uncertainty Matter?: Understanding the Impact of 
Predictive Uncertainty in ML Assisted Decision Making. 

35. D. Nguyen. (2018). Comparing Automatic and Human Evalu-
ation of Local Explanations for Text Classification. 

36. J.S. Park, R. Barber, A. Kirlik, K. Karahalios. (2019). A Slow 
Algorithm Improves Users’ Assessments of the Algorithm’s Accu-
racy. 

37. F. Poursabzi-Sangdeh, D.G. Goldstein, J.M. Hofman, J. Wort-
man Vaughan, H. Wallach. (2021). Manipulating and Measuring 
Model Interpretability. 

38. E. Rader, K. Cotter, J. Cho. (2018). Explanations as Mechanisms 
for Supporting Algorithmic Transparency. 

39. A. Smith-Renner, R. Fan, M. Birchfield, T. Wu, J. Boyd-Graber, 
D. Weld, L. Findlater. (2020). No Explainability without Accountabil-
ity: An Empirical Study of Explanations and Feedback in Interactive 
ML. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Hullman et al. 

40. A. Springer, S. Whittaker. (2019). Progressive Disclosure: De-
signing for Effective Transparency. 

41. K. Stowers, N. Kasdaglis, M. Rupp, J. Chen, D. Barber, and 
M. Barnes. (2017). Insights into Human-Agent Teaming: Intelligent 
Agent Transparency and Uncertainty. 

42. M. Szymanski, M. Millecamp, K. Verbert. (2021). Visual, tex-
tual or hybrid: the effect of user expertise on different explanations. 

43. N. van Berkel, J. Goncalves, D. Russo, S. Hosio, M.B. Skov. 
(2021). Effect of Information Presentation on Fairness Perceptions 
of Machine Learning Predictors. 

44. X. Wang, M. Yin. (2021). Are Explanations Helpful? A Compar-
ative Study of the Effects of Explanations in AI-Assisted Decision-
Making. 

45. M. Yin, J. Wortman Vaughan, H. Wallach. (2019). Understand-
ing the Effect of Accuracy on Trust in Machine Learning Models. 

46. K. Yu, S. Berkovsky, R. Taib, J. Zhou, F. Chen. (2019). Do I 
trust my machine teammate?: an investigation from perception to 
decision. 

8.2 Coding guide 
Our coding approach is designed to separate the following ques-
tions: 

• Does the study include a task for which a ground truth re-
sponse can be defined? 

• Does the study give the participant a decision problem that 
a rational agent could best respond to? 

• Do the researchers interpret the results assuming the same 
decision problem given to participants, or do they assume a 
different problem (e.g., by changing the scoring rule when 
they evaluate responses)? 

Through iterative collaborative coding, the first two authors 
developed five codes: 

(1) Applicability of framework: Do the research questions 
concern a type of task for which a ground truth state can be 
defined? 

(2) Evaluative conclusions: Do the authors draw conclusions 
about flaws or performance loss in human decisions from their 
results, such as ranking different conditions, or implying 
that participants could have done better in any condition? 

(3) Well-defined problem: Does the task presented to partic-
ipants represent a well-defined decision problem? In other 
words, are participants in the study were provided with suf-
ficient information for a rational agent to best respond to 
the task? 

(4) Same rule (problem) reported? Do the authors interpret 
the results assuming the same scoring rule given to par-
ticipants, such that the results bear on the same decision 
problem given to participants? 

(5) Flat rule? Does the rule used to incentivize participants as-
sign the same score to all responses regardless of the ground 
truth? 

When the framework was not applicable, we did not proceed to 
code the remaining items. In cases where not enough information 
was provided in the paper text or the supplemental material to 
determine the code, we noted this. When papers reported multiple 

studies or multiple conditions in the same study that differed in 
their codes, we used reported Sometimes and Partially, respectively. 

We coded the third item above–Is the problem given to partici-
pants well-defined?–by requiring that the following three criteria 
were fulfilled: 

• Does the task given to participants admit a ground truth 
state and induce uncertainty about the state, at least across 
participants? 

• Are participants provided with ample information about the 
data-generating model for a rational agent to understand 
how to best respond (i.e., optimize)? 

• Are participants provided with a scoring rule that unambigu-
ously assigns a score to each possible response in the action 
space? 

Note that the first criteria is distinct from Applicability of the 
framework code described above: the former asks about the task 
given to participants, while the latter asks more broadly whether 
the researchers were interested in behaviors for which a ground 
truth could be defined. In other words, the Applicability criteria 
asks, regardless of how the researchers scored the responses, would 
it have been possible to score against a ground truth? For the sec-
ond criteria, we analyzed whether the problem put to participants 
was one which a rational agent could best respond to in principle, 
regardless of whether the authors analyzed the results assuming the 
same problem definition. For the third criteria, we considered flat 
scoring rules (i.e., paying every participant the same amount regard-
less of response) unambiguous, since they clearly assign the same 
score to every response. In cases where other rules were verbally 
described only (e.g., "Do your best to submit accurate responses") 
but a flat rule was used, we considered the flat reward to be the 
scoring rule for incentives for that problem since it is the rule that 
a rational agent would respond to. 

In coding the fourth item–Was a flat scoring rule used to in-
centivize participants?–we encountered some cases where the re-
searchers paid participants a given amount regardless of quality but 
filtered responses in analysis to only those that correctly answered 
one or more “check” questions. We coded such cases as using a 
flat rule unless researchers specifically noted that they did not pay 
participants who failed these questions. 
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8.3 Coding results 

Study ID Applicable? Evaluative? Well defined? Same rule? Flat rule? 
1 Y Y N N Y 
2 Y Y Y Y N 
3 Y Y Y N N 
4 Y Y Y Y N 
5 Y Y Y Y N 
6 N NA NA NA NA 
7 Y Y N N Y 
8 Y Y N N Y 
9 Y Y N N Y 
10 Y Y N N NA 
11 Y Y N Y N 
12 Y Y Not enough info N N 
13 Y Y N N N 
14 Y Y N N Y 
15 Y Y Not enough info N Y 
16 Y Y N N N 
17 N NA NA NA NA 
18 N NA NA NA NA 
19 Y Y N Not enough info Not enough info 
20 Y Y Y N N 
21 Y Y Y N N 
22 Y Y N Not enough info Not enough info 
23 Y Y Y Y Y 
24 Y Y Not enough info N Y 
25 Y Y N N Not enough info 
26 N NA NA NA NA 
27 Y Y N Not enough info Not enough info 
28 Y Y N N Y 
29 Y Y Partially N N 
30 Y Y Not enough info N N 
31 Y Y N Sometimes Sometimes 
32 Partially Y N Not enough info Not enough info 
33 Y Y Partially N N 
34 Y Y N Y N 
35 Y Y N N Y 
36 Y Y N N Y 
37 Y Y Partially N Y 
38 N NA NA NA NA 
39 N NA NA NA NA 
40 N NA NA NA NA 
41 Y Y N Not enough info Not enough info 
42 Y Y N Not enough info Not enough info 
43 Y Y N N Y 
44 Y Y N N N 
45 Y Y N N Y (most conditions) 
46 Y Y N Y N 
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